
 

 

 

Estimating the Survival Distribution of  

Aluminum Processing Pots 
 

 

 

 

 
by 

 

Emily L. Butler 

 

 

 

 

 

 

Honors Project 

 

 

 
Project Advisor: Joel Greenhouse, Department of Statistics 

 

 

 

 

 

Presented to the Department of Statistics and the Dean’s Office  

of the College of Humanities and Social Sciences in  

Partial Fulfillment of the Requirements for the H&SS Senior Honors Program 

 

 

 

Carnegie Mellon University 

 

 

College of Humanities and Social Sciences 

 

 

May 2011



 

 

Abstract: 
 

The goal of this thesis is to specify a probability model for time-to-failure items in a 

manufacturing process.  Specifically, I am interested in the time-to-failure of containers, called 

pots, in which aluminum is produced.  Aluminum smelting is a very complex and sensitive 

process.  The process uses specialized large carbon lined steel pots that contain a carbon rod and 

a molten cryolite bath, in which the final product aluminum is produced. A problem arises when 

the pots fail, for example, when a pot is unable to operate at a certain temperature the molten 

aluminum hardens resulting not only in wasted product, but also wasted time and resources to 

clean and remove the pot.  In this thesis, I investigate different parametric models for the time-to-

failure distribution for aluminum pots: the Weibull model, the Weibull change-point model, the 

Gompertz model, and the Gompertz-Makeham model.  My work involves understanding the 

structure of the data, specifying which distributions to investigate and why, estimating 

parameters using maximum likelihood estimation, visualization methods for time-to-failure data, 

and how to test the fit of the models.  These topics will all be discussed using a data set provided 

by Alcoa, Inc. 
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Chapter 1:  Introduction 

 The goal of this thesis is to specify a probability distribution for the time-to-failure of 

items in a manufacturing process.  Specifically, I am interested in the time –to-failure of the 

containers, called pots, in which aluminum is produced.  Discussion will involve understanding 

the structure of the data, specifying which distributions to investigate and why, estimating 

parameters using maximum likelihood estimation, how to fit the model, visualization methods 

for time-to-failure data, and how to test the fit of the models.  These topics will all be discussed 

using a data set provided by Alcoa, Inc. 

 Aluminum Production 

 Aluminum is frequently used in automobile manufacturing, aerospace engineering, 

construction, and for many household uses.  It has become an essential part of everyday life.  

However, aluminum is not found naturally in the environment; it needs to be altered from its 

natural state.  The element ―aluminum‖ is too reactive to occur by itself in nature—instead, it 

combines with other elements to form various minerals (―How Aluminum is Produced‖).  The 

most abundant source of aluminum is located in ―bauxite ore‖ and, consequently, it is a crucial 

component in aluminum manufacturing.  There are two major steps in the production of 

aluminum.  First, alumina is extracted from bauxite ore though the Bayer Process, then it 

undergoes smelting to convert the alumina to aluminum, using the Hall-Héroult Process.  

 During the Bayer Process, the bauxite ore is crushed and mixed with a mild sodium 

hydroixide solution.  The mixture is placed in a digester where it faces high temperatures and 

extreme pressure, resulting in dissolved aluminum oxide and other residue (including silicon, 

lead, titanium, etc, which sink to the bottom of the digester).  After the water is evaporated out of 
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the aluminum oxide mixture and the solution is condensed, it crystallizes, forming aluminum 

hydroxide and sodium hydrizide, also known as alumina.  

Following the Bayer process is the Hall-Héroult Process. The smelting process occurs in 

a number of large carbon lined steel reduction pots which contain a carbon rod and a molten 

cryolite bath (sodium aluminium fluoride).  While the alumina is mixed with a cryolite bath, an 

electrical current runs through that mixture from the positively charged carbon rod to the 

negatively charged carbon lined pots (at about 5.25 volts).  As the electrical current flows 

through the mixture, carbon is combined with oxygen in the alumina, producing aluminum and 

carbon dioxide as a byproduct.  The molten aluminum settles to the bottom of the pot while the 

carbon dioxide is released through the top.  The molten aluminum is then siphoned off where it 

can be collected and turned into the various alloys used in everyday products (―Aluminum 

Smelting and Refining‖).  The entire smelting process requires rows of reduction pots, or 

potlines, be in production 24 hours a day, 365 days a year.  It is difficult to stop and start the 

smelting process because the result is a loss of money, energy, and product. Furthermore, if the 

temperature of the pots decreases and the molten aluminum hardens, the repair and clean up is 

costly and time consuming.  Unfortunately, as difficult as it is to change or repair the reduction 

pots, these pots do not last forever.   

It is very difficult to estimate when a pot stops working.  Being able to estimate when a 

pot stops performing efficiently would not only save a company time, money, and energy but 

also reduces the costs to consumers.  This problem was brought by Alcoa Inc.   

Alcoa provided data from 131 pots.  Of these pots, 47 had ―failed,‖ or were unable to 

continue producing aluminum efficiently, and 84 were still operating at the time the data finished 

being collected, which was December 31, 2009.  The goal of this research is to find a probability 
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model for the pot failure times.  I will use statistical models and tests based on methods for the 

analysis of survival data to best describe the distribution of the failure time of these aluminum 

smelting pots.  

Survival analysis uses information about the failure time of the pots to estimate the time-

to-failure distribution of the pots.  The purpose to this analysis is to discover which survival 

distribution these data follow.  These results will be useful to eventually create a predictive 

model for pot failure.  At the onset it will be useful to review what survival analysis is, why it is 

germane for this type of problem, and what kind of information it provides.   

Survival Analysis 

In many investigative fields, including engineering and medical research, researchers are 

interested in estimating the time until an event of interest occurs.  In a field involving live 

subjects like the medical field, one may be interested in estimating the time until death of the 

subject from the beginning of observation time, for example birth, onset of a disease, entrance or 

start of a clinical trial.  In an engineering problem such as the one I am concerned with, the focus 

is on time until failure of an object, such as a pot or a lightbulb.  My analysis is interested in 

estimating the survival time, or how long the pots function until they fail.  The collection of 

methods used for the analysis of time-to-failure data is called survival analysis. 

 Survival analysis is the study of lifetime distributions, in this case, the lifetime of the pots 

where lifetime refers to the period from the beginning of observation until failure.  The time 

when the pots fail is referred to as the failure time.  In our case, the failure time will be day the 

pot stopped working.   

Before any conclusions are able to be drawn or before it’s possible to make predictions, it 

is necessary to specify a probability model for the distribution of the survival times.  I will be 
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using familiar representations of probability distributions, the probability density function and 

the cumulative distribution function, as well as three unfamiliar functions that are typically used 

in survival analysis: the survival function, the hazard function and the cumulative hazard 

function.  I will show how each of these functions are related such that if one function is known, 

it is possible to derive the others.  Each of the functions highlights different features of the 

distribution of survival times. 

 To show these relationships, start by assuming that random variable   is continuous, 

 >0, and has a probably density function (pdf),     .  The cumulative distribution function (cdf), 

    , can be obtained by integration the pdf: 

            
 

 

 

which can also be denoted as         , the cumulative probability of the occurrence of the 

random variable   up to a given point,  .  In words, the cumulative distribution function 

measures the cumulative probability that an object fails before time   (―Related Distributions‖).  

In survival analysis, the interest is in the probably of survival beyond time  , or 

                          
 

 

 

which is called the survival function.  It is possible to derive the pdf from the survival function 

by taking the negative derivative of the survival function with respect to  , or 

       
      

  
 

To describe the lifetime distribution of a random variable, it’s also possible to use the 

hazard function,     , which measures the instantaneous failure rate at time  .  The hazard 

function is 
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The hazard function is the risk of failure in a small time interval, given survival at the 

beginning of the time interval (Elandt-Johnson and Johnson, 60-63). As a function of time, a 

hazard function may be increasing, meaning as time increases the rate for failure increases, for 

example, when a patient is untreated for a disease such as cancer; may be decreasing, for 

example, as a person is recovering from severe trauma like a surgery; or may be constant, 

meaning the rate of failure is the same regardless of how much time has passed.   

The cumulative hazard function, or the accumulation of hazard over time, can be found 

by integrating the hazard function from 0 to t, 

             
 

 

 

or equivalently can be found by taking the negative logarithm of the survival function (Smith, 3-

13): 

               

The hazard function will be discussed in more detail in the next chapter.  As one can see from the 

table below, it is possible to find any of these functions if one of the other functions is known. 

Probability Density Function:                                   

Cumulative Density Function:                   
 

 

 

Survival Function:                         

Hazard Function:            
    

    
   

    

      
    

Cumulative Hazard Function:                            
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As an example, consider a random variable   with an exponential probability distribution 

with parameter   

       
 

 
  

 

 
 
. 

By integrating, the cdf of   is 

        
 

 
  

 

 
   

 

 
      

 

 
 
. 

The survival function is then 

             
 
 
      

 
 
 
 

and the hazard function is 

     

 
   

 
 
 

  
 
 
 

 
 

 
 

From the hazard function, the cumulative hazard function is 

       
 

 
   

 

 
 

 

 

 

The survival function is central in survival analysis and has three important properties: 

1. It is a monotonically decreasing function, which is logical because it is the 

complement of the cdf, which is monotonically increasing;   

2.         

3.         .   

In words, at time     all pots are working, meaning the survival function equals 1 (no pots 

have failed yet), and as    , eventually all of the pots will fail which means the survival 

function will eventually equal 0 (Lee and Wang, 10-12).   

A complication of survival data is that it is often not possible to observe all of the pots 

until they have failed.  However, it is important to have information about which pots failed and 
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which ones did not.  The pots that have not failed by the end of the observation period are 

referred to as censored observations.  Therefore, the pot data consists of time until either failure 

or time until censored (Smith, 73-77).  We will use an indicator variable to indicate if the pot was 

a failure or if it was censored.   

 The statistical challenge is given a data set to find the best fitting probability model for 

the distribution of survival times.  For a parametric survival model, this means estimating the 

parameters and then assessing the goodness-of-fit of the model.  Because of the one-to-one 

relationship among the different representations within a family of survival distributions, once 

the parameters of the distribution are estimated it’s possible to display                 or     . 

Maximum likelihood estimation will be used to estimate the parameters and the likelihood ratio 

test and AIC will be used to assess the fit of different survival models.  I will also use Kaplan-

Meier nonparametric estimates of      and of      for exploratory visualization of the survival 

data and to help assess the fit of the models. 

Graphing the survival function is important because it provides valuable insight into the 

behavior of the data.  The Kaplan-Meier estimate of the survival curve will remain flat until there 

is a failure at which time the curve will drop an amount proportional to how many items failed at 

that time.  When there are no more failures, the curve will flatten out again until it reaches 

another failure, where again the drop of the curve with be proportionate to the amount of pots 

that have failed.  This means that the steeper the curve, the more failures there are and the larger 

the hazard rate.  If the curve is relatively flat and has a shallow slope, there are a lot of pots 

surviving, i.e. pots are failing at a slow rate.  The Kaplan-Meier estimate of the survival curve 

does not depend on any parametric assumptions about the underlying probability distribution of 

the data (Smith, 96-98). 
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An Example 

To illustrate the different functions used in the analysis of survival data, I have generated 

data from an exponential distribution where the parameter   equal one.  Imagine that the data 

were collected on how long a light bulb lasts until it burns out.  To do this, 30 light bulbs were 

turned on at the same time and each one is observed until it burns out, or fails.  The survival 

times are found in the table below. 

Survival Time of 30 Lightbulbs in Months 

0.020 0.025 0.059 0.062 0.145 0.186 0.196 0.197 0.205 0.210 0.262 0.314 0.511 0.604 0.678 

0.695 0.740 0.760 0.846 0.86 0.914 0.992 1.181 1.194 1.309 1.995 2.255 2.509 2.910 5.543 

 

To estimate the survival function,       simply count up the observations larger than time    The 

easiest way to do this is create a latent variable,  , where  

   
        
        

  

If there are no censored observations the empirical survival function is 

       
                

 
 

 

 
      

 

   

 

where    represents the observed survival times.  To calculate       all 30 light bulbs were 

burning at time equals 0, therefore      
  

  
  .  Similarly, at time ∞, zero light bulbs are still 

working so          Therefore, these two conditions are happily satisfied.  A plot of the 

estimate of the empirical survival function, that is, the Kaplan-Meier curve is on the next page on 

the left. The plot of the empirical cumulative hazard function is on the right.  The empirical 

cumulative hazard function is found by taking –    (Kaplan-Meier Curve) at each time point. 
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To investigate the underlying distribution of the data, one can fit various survival 

functions to the data and visually compare how similar the survival functions are to the Kaplan-

Meier estimate of the survival function.  For example, it’s hypothesized that this data is 

exponentially distributed.  To test this hypothesis, plot the survival function of the exponential 

distribution on the Kaplan-Meier plot, and plot the hazard function of the exponential 

distribution with parameter     on the cumulative hazard plot.  As one can see from the plots 

on the next page, exponential survival curve appears to be similar to the Kaplan-Meier empirical 

survival curve.  However, even though the data were generated from an exponential distribution 

with    , because of sampling variability we see deviations of the observed data from the 

theoretical model, especially in the upper tail. 



12 
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Chapter 2: Fitting Distributions 
 

Recall that the goal of this analysis is to specify a probability model for the failure times 

of aluminum smelting pots using survival analysis.  Before investigating which distribution fits 

best, it is important to become familiar with the structure of the data. Below are two Kaplan-

Meier curves of the underlying survival function.  On the left-most plot, note an obvious flat 

horizontal line from 0 to 1139 days, indicating that no pots failed within the first 1139 days.  

Because there is such an extend time until the first failure occurs, I will truncate the data prior to 

day 1138 to make the analysis conditional on an initial period in which there are no failures.  The 

conditional Kaplan-Meier survival curve is shown below on the right most plot.  Subsequently, 

when I refer to the survival distribution I mean the conditional survival distribution,       

     . 

   

The plot on the following page is the cumulative hazard plot for the conditional survival 

data. 
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 Even after the data is truncated, the range of failure times is still quite large, ranging from 

0 to 1500 days.  To facilitate numerical calculations and for ease of interpretation, I have 

transformed the data to years.  As is visible in the plots of the survival and cumulative hazard 

functions below, the only thing that has changed is the time scale; the shape and behavior of the 

curves are the same.  For the rest of this thesis, time will be reported in years. 
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Maximum Likelihood EstImation 

Before any distribution can be fit to the data, the parameter values need to be estimated.  

For example, the survival function for the Weibull distribution is 

                 

where   and   are unknown parameters and   is the failure time.  Different families of 

probability distributions have different unknown parameters.  Given a family of probability 

distributions, the member of that family that best fits a given data set is found by estimating the 

parameters.  The method of choice for parameter estimation is maximum likelihood estimation 

(MLE).  

For survival data, the likelihood function is  

                
          

    
   , 

where   is the parameter of interest,       is the pdf of probability distribution,     ) is the 

survival function,    is the failure times of the i
th

 pot, for i=1…131, and δ is the status of the pot, 

i.e. whether it is censored (   ) or not (   ).  The contributions to the likelihood function 

for the pots that have failed (   ) is       and for the pots that have not failed (   ) is       

(―Maximum likelihood estimation‖).  

Working with the logarithm of the likelihood function is often easier.  Because a 

logarithm is a monotone transformation, the values of the parameters that maximize the 

likelihood function also maximize the log likelihood function.  Because                , the 

likelihood function can be written:  

(1)                   
           

     
                      

   
            

    ] 

Therefore, 

(2)                                             
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Because                   

(3)                                           
 
   

 
                 

For a given data set, the value of   that maximizes the log likelihood function is the 

MLE.  Once I obtain the MLEs, I will plug them into the survival function or the cumulative 

hazard function and produce graphical displays to visualize the fit of the distribution to the data.   

Residual Analysis 

The Cox-Snell residuals are one way to investigate how well a model fits the data.  

They’re calculated using the cumulative hazard function. Let   be continuous.  Since the survival 

function is distributed uniformly on (0,1), i.e.,  

             

it is not hard to show that the cumulative hazard function is exponentially distributed with 

 =1,i.e.,  

–                        

The Cox-Snell residual,     is defined for the i
th

 observation: 

     
                                                 

                                            
  

I will generate a qqplot of the Cox-Snell Residuals versus an exponential distribution with mean 

1.  If the specified survival model fits the data well, I would expect to see the points align with a 

line with slope 1 and intercept 0.  Because none of the distributions will be a perfect fit, one 

should look for the points to appear to be tightly scattered around the line to have good evidence 

that the model is a good fit to the data (Smith, 157-159). 
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Likelihood Ratio Test 

One way to compare two nested models is by performing a likelihood ratio test. The test 

calculates how much more likely the data are if they came from one distribution compared to 

another.  It compares the values of the likelihood function evaluated at the MLEs for each of the 

models.  Since it’s only possible to compare two models at a time, the simpler model is the null 

and the more complex model is the alternative.  The ratio between the two models, or λ, is 
  

  
 

where   is the value of the likelihood function for the null model and   is the value of the 

likelihood function for the alternative model.  The test statistic for the likelihood ratio test,  , is 

negative twice the difference between the values of the log likelihood functions: 

               

            
   

   
   

                      

where   follows a Chi-Square distribution (        
    and the degrees of freedom are equal to 

the number of free parameters in the alternative minus the number of free parameters in the null.  

If    is small, we conclude that the data are more likely to be from the null hypothesis model.  If 

  is large, we conclude that the data are more likely to be from the more complex model 

(―Likelihood ratio tests‖). 

 AIC (Akaike Information Criteria) 

A method for comparing among two or more models is the Akaike Information Criterion 

(AIC) which is a measure of the relative goodness of fit for statistical model.  The AIC is 

calculated as negative two times the value of the log likelihood function plus two times the 

number of parameters, or 
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              . 

 

A more complex model is usually a better predictive model, because more parameters allows for 

more flexibility in how the model fits the data (O’Meara).  However, there can be a large 

increase in the complexity of a model while receiving only a little more predictive power.  

Therefore, the AIC penalizes the value of the log likelihood function for the complexity of the 

model, ensuring that the most complex model won’t always be considered the best model 

(―Akaike’s Information Criteria‖).  To use this method to choose among the best models, I will 

calculate the AIC value for each of the models, and then rank the models by this criterion.  The 

model with the lowest AIC value is considered the best. 

 To summarize, it is important to use the visual representations as well as formal statistical 

tests to decide which model is the best.  The visual representations, e.g. the Kaplan Meier curve, 

the cumulative hazard function plot, and the Cox-Snell residual plots, help make sure that the 

specified models actually fit the data.  The likelihood ratio test and AIC value only measure 

which of the presented models is the best; they do not say if any of the models are even a good 

fit to the data.  Once it is verified that a models fits the data by looking at the survival plot, 

cumulative hazard plot, and the residual plot, the likelihood ratio test and AIC value will be used 

to decide which model is the best for the data. 
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Chapter 3: Weibull and Gompertz Distributions 

 Recall that the Kaplan-Meier plot of the survival function and the cumulative hazard 

function for the aluminum pot data are 

  

 

As seen in the cumulative hazard plot, the risk of failure is increasing nonlinearly over 

time.  I will investigate 4 models that allow for increasing hazard rates.  I will start with the most 

simple, and end with the most complex. 

Weibull Distribution 

 The survival function of the Weibull distribution is  

           
 
, where         

and the pdf is  

                   
 
. 



20 

 

The hazard function is 

               

and the cumulative hazard function is  

          . 

The value of   determines the direction of the failure rate.  If      , the hazard function is 

decreasing, if      , the hazard function is increasing, and if      , the hazard function is 

constant.  Note, when     

                  
 
         

which is the exponential distribution with mean 
 

 
.  The exponential is a special case of the 

Weibull distribution (―Weibull distribution‖).   

The log likelihood function of   and   is: 

                                       

 

   

 

   

            

                 
           

 
         

 

   

 

   

           
 
  

                  
                     

         

 

   

 

   

        
   

The maximization of the log likelihood function requires numerical methods.  To do this, I wrote 

create a function in R that returns the value of the negative log likelihood function. I then use an 

optimization function that will minimize this function to obtain the maximum likelihood 

estimates of   and   (Steenbergen,2-6).  Refer to section 3 of the Appendix for the R code. 
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Results 

 For the aluminum pot data, the maximum likelihood estimates are:   =0.156 and   =1.680. 

The standard errors of the estimates found by inverting the Hessian are:       =0.018 and 

      =0.227.  To see how well the Weibull distribution fits these data, I plug the MLEs into the 

survival function and plot the Weibull survival curve over the Kaplan-Meier estimate of the 

survival curve.  I also plot the MLE of the cumulative hazard function on the Kaplan-Meier 

estimate of the cumulative hazard function.  See the figures below. As can be seen from the plots 

of the survival function and the cumulative hazard function, the Weibull distribution is a little too 

rigid of a distribution to fit these data. It appears this distribution fits well from time 0 to about 2 

years, but not so well after that.  Both graphs show that the Weibull may be a little better if it was 

more flexible or there was more curvature after time of 3 years. 
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Gompertz Distribution 

  The survival function of the Gompertz distribution is  

      
 
 

 
       

, where         

and the pdf is  

       
   

 

 
       

. 

The hazard function is  

          

and the cumulative hazard function is 

     
 

 
       . 

The log likelihood function is constructed as follows (Hogg and Ledolter, 120): 

                             

 

   

 

   

            

                 
   

 
 
       

         

 

   

 

   

      
 
 
 
       

  

                           
 

 
                  

 

   

 

   

   
 

 
           

 The maximization of the log likelihood function requires numerical methods.  To do this, 

I wrote another function in R that returns the negative log likelihood function of this distribution.  

I then use an optimization function that will minimize the function to obtain the maximum values 

of β and γ (Steenbergen,2-6).  Refer to section 4 of the Appendix for the R code. 
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Results 

The maximum likelihood estimates are:    =0.028 and    =0.585.  The standard errors of 

the estimates are:       = 0.010 and       =0.121.  To see how well the Gompertz distribution 

fits these data, I plug the MLEs into the survival function and plot the Gompertz survival curve 

over the Kaplan-Meier estimate.  See the figures below.  As can be seen from the plots of the 

survival function and cumulative hazard function that, the fit of the Gompertz distribution to 

those data appears to be more flexible than the Weibull and appears to model the exponentially 

increasing failure rates of the data better.  From the cumulative hazard function, plot it appears 

that this model does a good job fitting the data until about time 3.5 years, but not such a good job 

in the upper tail.   

  

 Both Weibull and the Gompertz distributions are two parameter models.  In the next two 

chapters, I consider more complex models to try to improve the fit to the pot data.   
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Chapter 4: Gompertz-Makeham Distribution 

The Gompertz-Makeham law states that the failure rate is a combination of an age 

independent Makeham term and an age dependant Gompertz term.  The failure rate of the 

Makeham term is linear, while the failure rate of the Gompertz term is exponential.  This law 

describes the behavior of human mortality, most accurately in the later part of life (―Gompertz-

Makeham law of mortality‖).  The Gompertz-Makeham distribution is an extension of the 

Gompertz distribution and a more complex distribution. Recall the survival function of the 

Gompertz distribution is 

      
 
 

 
       

. 

The survival function of the Gompertz-Makeham distribution is  

      
    

 

 
       

      
 
 

 
       

   

The Gompertz-Makeham distribution differs from the Gompertz because of the additional term, 

    . Looking at the cumulative hazard function of the Gompertz-Makeham distribution, 

        
 

 
        

this addition allows the hazard rate to change over time.  For small values of   we see a more 

linear increase in the risk of failure over time.  For large values of   the exponential term will 

dominate (
 

 
         and we will see an exponential increase in the failure rate.  From the 

Kaplan-Meier plot of the survival function and the cumulative hazard function, it appears that 

times 0 to about 3 years have a more shallow slope than times greater than 3.  This distribution 

was chosen as a possible fit to the data because the extra term in the Gompertz-Makeham 

distribution may do a better job fitting the more linear part of the underlying function while the 

Gompertz term may fit the data with more curvature.  
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Gompertz-Makeham Distribution 

 As stated, the survival function of the Gompertz-Makeham distribution is  

      
    

 

 
       

, where            . 

The pdf for this distribution is 

              
    

 

 
       

. 

The hazard function is 

            

and the cumulative hazard function is 

        
 

 
       . 

The log likelihood function of  ,  , and   is 

                               

 

   

 

   

            

                          
    

 
 
       

         

 

   

 

   

      
    

 
 
       

  

                                  
 

 
                  

 

   

 

   

      

 
 

 
           

The maximization of the log likelihood function requires numerical methods.  To do this, I wrote 

create a function in R that returns the value of the negative log likelihood function. I then use an 

optimization function that will minimize this function to obtain the maximum likelihood 

of     and   (Steenbergen,2-6).  Refer to section 5 of the Appendix for the R code. 
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Results 

 The maximum likelihood estimates are:   =0.058,   =0.0009, and   =1.4111.  I was not 

able to obtain the standard errors for these estimates.  To see how well the Gompertz-Makeham 

distribution fits these data, I plug the MLEs into the survival function and plot the Gompertz-

Makeham survival curve over the Kaplan-Meier estimate of the survival curve.  I also plot the 

MLE of the cumulative hazard function over the Kaplan-Meier estimate.  See the figures below. 

It appears the Gompertz-Makeham distribution does a good job of fitting the distribution of pot 

failure times.   

  

 One reason to consider the Gompertz-Makehman distribution was that the distribution 

has the flexibility to fit both the early and the later failure times. In the next chapter I consider 

another model that also has this feature. 
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Chapter 5: Weibull Change Point Model 

 Inspection of the cumulative hazard plot for the pot data suggests that the hazard rate 

increases linearly until about year 3 (actually 6.4 years from the start of production).  After that, 

the pots start failing more rapidly.  In this chapter I propose a Weibull change point survival 

model to better model this change in the failure rates of the aluminum pots.  The model specifies 

a Weibull distribution for the failure times prior to a specified time point which I called ―a‖ and 

then specifies another Weibull distribution for the failure times after time ―a‖. 

Weibull Change Point Model  

Recall the Weibull the survival function is  

           
 
 

and that the cumulative hazard function is 

                    . 

Define      to be the logH(t), where  

                                                 

and           . 

Let the change point be denoted by ―a‖ and define an indicator variable c such that 

   
             
                  

  

The specify the Weibull change point model, I will define the log of the cumulative hazard 

function as: 

                                        

where                    if t ≤ α and                    if t > α.  To ensure that the 

function is smooth at the change point ―a‖, it is necessary that 
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Therefore, 

                     . 

By substituting                   for   , it follows that 

                                                        

                                                    

Recall that             , therefore 

                                                              

This model has four parameters,        and  .  

 To find the survival function for this change point model I need to find the hazard 

function.  Recall that 

     
 

  
    . 

Since 

                       , 

Hence by the chain rule,  

            
       

  
 

Taking the derivative of     with respect to t, 

       

  
 

   

 
 
       

 
 

and therefore 

           
   

 
 
       

 
  

or 
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Finally, to find the pdf for the change point Weibull, recall  

            

and that 

                

The log-likelihood function for the Weibull change point model is 

                                       

 

   

                          

The four parameters of interest are,        and . 

Finding the Change Point 

 To fit this model, it is necessary to find the change point ―a‖.  While it is possible to look 

at the cumulative hazard plot and select a value of a, it is also possible to find the change point 

formally using maximum likelihood estimation.  To find the MLE of the change point, I use the 

following method.  I choose a range of values of ―a‖ around where I think the change point is.  I 

choose the smallest value of ―a‖ in this range and maximize the likelihood function for the other 

parameters in the model.  I note the value of the log likelihood function at the maximum.  Then I 

choose the next value of ―a‖ in this range and repeat the procedure.  I do this for all the values of 

a in the range.  I then identify the value of ―a‖ that gives the largest log likelihood function. This 

is the MLE of ―a.‖  This procedure generates the profile likelihood of ―a‖ and yields the joint 

MLEs of all of the parameters. 

Results 

The maximum likelihood estimates are a=3.44,   =1.304,   =3.107, and  =0.108. The 

standard errors of the estimates are                             and             .   

Using these parameters, it’s now possible to plot the survival function and the cumulative hazard 
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function; see plots below.  The change point does a great job fitting the failure times before time 

3.44 years and the fit after time 3.44 years is pretty good too.   

 

 I have fit four distributions to the aluminum pot data.  The next step is to test which of the 

distributions fits the data the best using the likelihood ratio test and AIC. 
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Chapter 6: Choosing Among Models 

 

I have fit the four survival models to aluminum pot failure time data.  The next step is to 

investigate differences in the fits of the different models.  

Cox-Snell Residuals 

First I will investigate the fit of the models using the using Cox-Snell residuals.  For each 

of the survival models, I calculate the estimated cumulative hazard function for each pot by 

substituting the estimated MLEs for the parameters of the respective model.  Recall from 

Chapter 2, if the pot is a failure, the Cox-Snell residual is equal to the estimated value of the 

hazard function, and if the pot is a censored observation, the Cox-Snell residual is equal to the 

estimate of the calculated value of the cumulative hazard function plus 1. 

The Cox-Snell residual plots for all four models are on the following page.  As was 

pointed out in Chapter 2, if a model fits well, we expect the Cox-Snell residuals to follow an 

exponential distribution with mean=1.  The plots on the next page are qqplots.  In the plots on 

the next page the red line slope=1 and intercept=0.  If the model fits well we would expect the 

residuals to fall along this line.  For all four models we see that the tail on the right hand side 

deviates from the red line.  The aberrations we see in the Cox-Snell residual plots below 

emphasize where the models don’t fit the data well.  Perhaps it is not surprising that none of the 

models fit well in the upper tail where there are only censored observations and no failures.  In 

addition to assessing the model fits visually, it is also important to perform formal statistical test, 

such as calculate the AIC and perform the log likelihood ratio test. 
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AIC 

After calculating the value of the log likelihood function evaluated at the MLEs, the AIC 

value is obtained by : 

                

where       is the value of the log likelihood equation function evaluated at the MLEs and p is 

the number of parameters in the model.  The AIC is calculated for each survival model.  The 

model with the smallest AIC is the model with the best fit among the models being considered.  

The results are summarized in the table below 
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 Weibull Gompertz Change Point Gompertz-Makeham 

Log Likelihood Value -145.90 -140.04 -141.63 -138.64 

Number of Parameters 2 2 4 3 

AIC 295.79 284.08 291.26 283.28 

Rank 4 2 3 1 

 

As we suspected from inspection of the fitted survival curves, cumulative hazard plots, 

and Cox-Snell residual plots, the Gompertz-Makeham distribution is the best fit for the failure 

time distribution of the aluminum pot data. This is probably because it is the most flexible model 

which allows for a small and constant failure rate for young pots and a larger and exponentially 

increasing failure rate for older pots.  However, the AIC value for the Gompertz distribution is 

just a little larger than the AIC value for the Gompertz-Makeham distribution. 

Likelihood Ratio Test 

The comparison of the nested models can be done using the likelihood ratio test.  The 

likelihood ratio test statistics is given by: 

                     . 

  follows a Chi-Square distribution, with degrees of freedom equal to the number of free 

parameters in the alternative distribution minus the number of parameters in the null distribution.  

Because the Weibull and Weibull change point survival models are nested, we can compare them 

using the likelihood ratio test.  Specifically, the Weibull change point model has four parameters 

       and θ, and the smaller model, i.e., the Weibull distribution, is obtained when        

 . When         , 

                                                            

            
                 

 
       

 
    . 
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This is the cumulative hazard function of the Weibull distribution.  Therefore, the null hypothesis 

is       .  Using the table above, and the equation for the likelihood ratio test: 

                      

                                                             

The critical value of a Chi Squared distribution with 2 degrees of freedom at the 0.05 level is 

5.99.  Since the test statistic is 8.54, and 8.54>5.99, the likelihood ratio test is significant at the 

0.05 level, which means we reject the null hypothesis that       . We conclude the change 

point model is a better fit than a single Weibull, which is consistent with the analysis based on 

the AIC value. 

 A similar procedure is used when comparing the Gompertz and the Gompertz-Makeham 

distributions.  The Gompertz distribution has two parameters,  and  , and its cumulative hazard 

function is 

     
 

 
        

while the Gompertz-Makeham has three parameters,     and  , and its cumulative hazard 

function is  

         
 

 
       . 

It’s quite simple to see that when    , the Gompertz-Makeham distribution becomes the 

Gompertz distribution. Therefore, the null hypothesis is    .  Using the values of the log 

likelihood function from the table above,  

                      

                                                                . 
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The critical value of a Chi Squared distribution with 1 degree of freedom at the 0.05 level is 

3.84. Since our test statistic is 2.80, and 2.80<3.84, the likelihood ratio test is not significant at 

the 0.05 level..  We cannot reject the null hypothesis that    and conclude that the Gompertz-

Makeham distribution is not a significantly better fit to our data than the Gompertz.  Because the 

AIC values for the Gompertz and Gompertz-Makeham are so close, this is not a surprise. 
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Chapter 7: Discussion 

 Using the AIC values to compare all four distributions, it is found that the Gompertz-

Makeham distribution is considered the best fit for the distribution of the failure times for the pot 

data.  However, the likelihood ratio test indicates that the Gompertz-Makehm model does not 

provide a significantly better fit than the Gompertz distribution, which was ranked second when 

looking at the AIC values.  Since the AIC value for the Gompertz model is smaller than the 

Weibull change point model, I conclude that the best model for the data is the Gompertz survival 

distribution. 

 The results of this thesis suggest directions for further analysis.  There were various 

covariates collected during the observation of these pots, such as average temperature, average 

voltage, number of times the ratio in the bath dropped below threshold, etc.   Now that I have 

identified a survival model that best fits the data, future work would be to develop a Gompertz 

survival model that includes covariates to more accurately estimate when a pot will fail.   

 While I have fit a Gompertz distribution here, I have fit it to the transformed version of 

the data, which has been truncated and scaled.  Recall that in the original data, there was a long 

period without any failures, which is why the data were truncated.  An extension of the 

Gompertz survival model could include threshold parameters to account for this early period 

without failures.   

 From investigating this problem and doing this research, I have gained a significant 

portion of understanding of survival analysis.  I learned the importance of the different 

representations of the survival distribution and how they give different insights into the data.  

The importance of censored observations has also become very clear, as well as how to make 

sure they’re accounted for correctly in the data.  I have also learned how to think through 
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problems that come up during analyses and how to look for alternative solutions when the 

problem cannot be solved.  The deep understanding of the structure of statistical models and 

methods is an integral part of any analysis. 

 Ultimately, in order to fit a probability distribution to a data set, it is important to first get 

an understanding of the structure of the data.  This will help in the specification of a model.  

After choosing possible models, use maximum likelihood estimation to estimate the MLEs for 

each distribution, and use them to visualize the survival and hazard functions to get an idea of the 

fit.  Then, perform formal tests, such as computing the AIC and the likelihood ratio test to choose 

which model fits the best to the data. 
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Appendix: R Code 

 

Section 1 

Chapter 1: Light bulb example 

library(survival) 

lightbulb=rexp(30,1) 

lb.ft=survfit(Surv(lightbulb)~1) 

plot(lb.ft, ylab="Survival Function",xlab="Days (y)", main="Kaplan Meier Curve of Light Bulb 

Lifetime", mark.time=F,conf.int=F) 

lb.haz=coxph(Surv(lightbulb)~1) 

plot(basehaz(lb.haz)[,2:1], type="l", main="Cumulative Hazard Plot of Light Bulb Lifetime") 

exp.surv=function(theta,y){ 

 surv=theta*exp(-theta*y) 

 return(surv) 

 } 

plot(lb.ft, main="Kaplan Meier Curve of Data From an\nExponential Distribution", 

conf.int=F,mark.time=F) 

curve(exp.surv(1,x), 0, max(lightbulb),col="blue",add=T) 

 exp.haz=function(theta,y){ 

 haz=(theta*y) 

 return(haz) 

 } 

 plot(basehaz(lb.haz)[,2:1], type="l", main="Cumulative Hazard Plot\nExponential Distribution") 

 curve(exp.haz(1,x), 0, max(lightbulb),col="red",add=T) 

 

Section 2 

Kaplan-Meier estimate for the original data set 

surv.age.fit=survfit(Surv(Age, status01)~1) 

plot(surv.age.fit, main="Kaplan Meier Estimate of Failure Time", xlab="Days", 

ylab="Proportion Survived", mark.time=F, conf.int=F) 

pot.age=coxph(Surv(Age, status01)~1) 

plot(basehaz(pot.age)[,2:1], type="l", main="Cumulative Hazard Plot of Aluminum Pot Failure", 

xlab="Days",ylab="Cumulative Hazard") 

Kaplan-Meier estimate for the conditional data set 

surv.fit=survfit(Surv(t, status01)~1) 

plot(surv.fit, main="Kaplan Meier Estimate with Truncated Data", xlab="Days", 

ylab="Proportion Survived", mark.time=F, conf.int=F) 

pot.cox=coxph(Surv(t, status01)~1) 

plot(basehaz(pot.cox)[,2:1], type="l", main="Cumulative Hazard Plot of Aluminum Pot 

Failure\nwith Truncated Data", xlab="Days",ylab="Cumulative Hazard") 
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Kaplan-Meier estimate for the scaled data set 

surv.data.scale=Surv(t.scale, status01)~1 

surv.fit.scale=survfit(surv.data.scale) 

pot.cox.scale=coxph(Surv(t.scale, status01)~1) 

plot(basehaz(pot.cox.scale)[,2:1], type="l", main="Cumulative Hazard Plot of Aluminum Pot 

Failure\nwith Truncated, Scaled Data",xlab="Years",ylab="Cumulative Hazard") 

 

Section 3 

Log likelihood function for the Weibull model 

weib.likl<-function(param,y){ 

theta<-param[1] 

gamma<-param[2] 

logl<-sum(y[,2]*(log(gamma) + gamma*log(theta) + (gamma-1)*log(y[,1]) -

(theta*y[,1])^gamma )) -sum((1-y[,2])*(theta*y[,1])^gamma) 

return(-logl) 

}   

param.weib=optim(c(0.1,0.1),weib.likl,y=data.scale,hessian=T)$par 

p.weib=optim(c(0.1,0.1),weib.likl,y=data.scale,hessian=T) 

OI.weib=solve(p.weib$hessian) 

se.weib=sqrt(diag(OI.weib)) 

Plotting the survival function for the Weibull model 

weib.surv<-function(param,y){ 

theta<-param[1] 

gamma<-param[2] 

survival<-exp(-(theta*y)^gamma) 

return(survival) 

} 

plot(surv.fit.scale, main="Kaplan Meier Estimate with Scaled Data\nWeibull Distribution", 

xlab="Time", ylab="Proportion Survived", mark.time=F, conf.int=F) 

curve(weib.surv(param.weib,x),0,max(t.scale), col="blue", add=T) 

Plotting the hazard function for the Weibull model 

weib.haz<-function(param,y){ 

theta<-param[1] 

gamma<-param[2] 

haz<--log(weib.surv(param,y)) 

return(haz) 

} 

plot(basehaz(pot.cox.scale)[,2:1], type="l", main="Cumulative Hazard Plot with Scaled 

Data\nWeibull Distribution", xlab="Years",ylab="Cumulative Hazard")) 

curve(weib.haz(param.weib,x),0,max(t.scale), col="red", add=T) 
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Section 4 

Log likelihood function for the Gompertz model 

gomp.likl<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

logl<-sum(y[,2]*(log(beta)+gamma*y[,1]+(-(beta/gamma)*(exp(gamma*y[,1])-1)))) + 

sum((1-y[,2])*(-(beta/gamma)*(exp(gamma*y[,1])-1))) 

return(-logl) 

} 

param.gomp<-optim(c(.2,.2),gomp.likl,y=data.scale)$par 

p.gomp<-optim(c(.2,.2),gomp.likl,y=data.scale,hessian=T) 

OI.gomp=solve(p.gomp$hessian) 

se.gomp=sqrt(diag(OI.gomp)) 

Plotting the survival function for the Gompertz model 

gomp.surv<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

surv<-exp(-(beta/gamma)*(exp(gamma*y)-1)) 

return(surv) 

} 

plot(surv.fit.scale, main="Kaplan Meier Estimate with Scaled Data\nGompertz Distribution", 

xlab="Time", ylab="Proportion Survived",mark.time=F, conf.int=F) 

curve(gomp.surv(param.gomp,x),min(t.scale),max(t.scale), col="blue",add=T) 

Plotting the hazard function for the Gompertz model 

gomp.haz<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

haz<--log(gomp.surv(param,y)) 

return(haz) 

} 

plot(basehaz(pot.cox.scale)[,2:1], type="l", main="Cumulative Hazard Plot with Scaled 

Data\nGompertz Distribution", xlab="Years",ylab="Cumulative Hazard"))) 

curve(gomp.haz(param.gomp,x),min(t.scale),max(t.scale),col="red",add=T) 

 

Section 5 

Log likelihood function for the Gompertz-Makeham model 

gompmak.likl<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

alpha<-param[3] 
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logl<-sum(y[,2]*(log(alpha+beta*exp(gamma*y[,1])) + (-alpha*y[,1]-

(beta/gamma)*(exp(gamma*y[,1])-1)))) + sum((1-y[,2])*(-alpha*y[,1]-

(beta/gamma)*(exp(gamma*y[,1])-1))) 

return(-logl) 

} 

param.gm=optim(c(.03,0.6,.11),gompmak.likl,y=data.scale)$par 

p.gm=optim(c(.03,0.11,.6),gompmak.likl,y=data.scale,hessian=T) 

optim(c(.01,.09,.45),gompmak.likl,y=data.scale)$par 

OI.gm=solve(p.gm$hessian) 

se.gm=sqrt(diag(OI.gm)) 

Plotting the survival function of the Gompertz-Makeham model 

gm.surv<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

alpha<-param[3] 

surv<-exp(-alpha*y-(beta/gamma)*(exp(gamma*y)-1)) 

return(surv) 

} 

plot(surv.fit.scale, main="Kaplan Meier Estimate with Scaled Data\nGompertz-Makeham 

Distribution", xlab="Time", ylab="Proportion Survived", mark.time=F, conf.int=F) 

curve(gm.surv(param.gm,x),min(t.scale),max(t.scale), col="blue",add=T) 

Plotting the hazard function of the Gompertz-Makeham mode. 

gm.haz<-function(param,y){ 

beta<-param[1] 

gamma<-param[2] 

alpha<-param[3] 

haz<--log(gm.surv(param,y)) 

return(haz) 

} 

plot(basehaz(pot.cox.scale)[,2:1], type="l", main="Cumulative Hazard Plot with Scaled 

Data\nGompertz-Makeham Distribution", xlab="Years",ylab="Cumulative Hazard"))) 

curve(gm.haz(param.gm,x),min(t.scale),max(t.scale), col="red",add=T) 

 

Section 6 

Choosing the change point for the Weibull change point model 

a=seq(3,3.5, by=.01) 

value.vec=rep(0,length(a)) 

weib.likl.a<-function(param,y,a){ 

alpha1<-param[1] 

alpha2<-param[2] 
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theta<-param[3] 

logl<-sum(y[,2]*(y[,3]*log(alpha1) + (1-y[,3])*log(alpha2)) -

y[,2]*log(y[,1])+y[,2]*(alpha1*log(theta) + y[,3]*alpha1*log(y[,1]) + (1-

y[,3])*((alpha1-alpha2)*log(a) + alpha2*log(y[,1]))) - exp(alpha1*log(theta) + 

y[,3]*alpha1*log(y[,1]) + (1-y[,3])*((alpha1-alpha2)*log(a) + 

alpha2*log(y[,1])))) 

return(-logl) 

} 

for (i in 1:length(a)){ 

 c=rep(0,length(t)) 

 c[t<=a[i]]=1 

 data.cp=cbind(t,status01,c) 

 value.vec[i]=optim(c(1.34,2.81,0.11), weib.likl.a, y=data.cp,a=a[i])$value 

} 

a[which(value.vec==max(value.vec))] 

Log likelihood function of the Weibull change point model 

c.scale=rep(0,length(t.scale)) 

c.scale[t.scale<=(3.44)]=1 

data.cp.scale=cbind(t.scale,status01,c.scale) 

weib.likl.cp<-function(param,y,a){ 

alpha1<-param[1] 

alpha2<-param[2] 

theta<-param[3] 

logl<-sum(y[,2]*(y[,3]*log(alpha1) + (1-y[,3])*log(alpha2)) - y[,2]*log(y[,1]) + 

y[,2]*(alpha1*log(theta) + y[,3]*alpha1*log(y[,1]) + (1-y[,3])*((alpha1-

alpha2)*log(a) + alpha2*log(y[,1]))) - exp(alpha1*log(theta) + 

y[,3]*alpha1*log(y[,1]) + (1-y[,3])*((alpha1-alpha2)*log(a) + 

alpha2*log(y[,1])))) 

return(-logl) 

} 

param.cp.scale<-optim(c(1.34,2.81,0.11), a=(3.44), weib.likl.cp, y=data.cp.scale,hessian=T)$par 

p.cp<-optim(c(1.34,2.81,0.11), a=(3.44), weib.likl.cp, y=data.cp.scale,hessian=T) 

OI.cp=solve(p.cp$hessian) 

se=sqrt(diag(OI.cp)) 

Plotting the survival function of the Weibull change point model 

weib.cp.surv<-function(param,y){ 

alpha1<-param[1] 

alpha2<-param[2] 

theta<-param[3] 

c=rep(0,length(y)) 
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c[y<=(3.44)]=1 

a=3.44 

survival<-exp(-exp(alpha1*log(theta) + c*alpha1*log(y) +(1-c)*((alpha1-alpha2)*log(a) 

+ alpha2*log(y)))) 

return(survival) 

} 

plot(surv.fit.scale, main="Kaplan Meier Estimate with Scaled Data\nWeibull Distribution with 

Change Point", xlab="Time", ylab="Proportion Survived", mark.time=F, conf.int=F) 

curve(weib.cp.surv(param.cp.scale,x),0,max(t.scale),col="blue", add=T) 

Plotting the hazard function of the Weibull change point model 

weib.cp.haz<-function(param,y){ 

alpha1<-param[1] 

alpha2<-param[2] 

theta<-param[3] 

a=3.44 

haz=-log(weib.cp.surv(param.cp.scale,y)) 

return(haz) 

} 

plot(basehaz(pot.cox.scale)[,2:1], type="l", main="Cumulative Hazard Plot with Scaled 

Data\nWeibull Distribution with Change Point", xlab="Years",ylab="Cumulative 

Hazard"))) 

curve(weib.cp.haz(param.cp.scale,x),0,max(t.scale), col="red", add=T) 

 

Section 7 

Cumulative hazard functions for all four models 

cum.haz.weib=function(param,y){ 

theta=param[1] 

gamma=param[2] 

haz=(theta*y)^gamma 

return(haz) 

} 

c.scale[t.scale<=(3.44)]=1 

data.cp.scale.test=cbind(t.scale,c.scale) 

cum.haz.cp=function(param,y,a){ 

alpha1=param[1] 

alpha2=param[2] 

theta=param[3] 

haz=exp(alpha1*log(theta)+y[,2]*alpha1*log(y[,1])+(1-y[,2])*((alpha1-

alpha2)*log(a)+alpha2*log(y[,1]))) 

return(haz) 
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} 

cum.haz.gomp=function(param,y){ 

beta=param[1] 

gamma=param[2] 

haz=(beta/gamma)*(exp(gamma*y)-1) 

return(haz) 

} 

cum.haz.gm=function(param,y){ 

beta=param[1] 

gamma=param[2] 

alpha=param[3] 

haz=alpha*y+(beta/gamma)*(exp(gamma*y)-1) 

return(haz) 

} 

x.weib=cum.haz.weib(param.weib,t.scale) 

x.cp=cum.haz.cp(param.cp.scale,data.cp.scale.test,a=3.44) 

x.gomp=cum.haz.gomp(param.gomp,t.scale) 

x.gm=cum.haz.gm(param.gm,t.scale) 

cs.weib=rep(0,131) 

cs.cp=rep(0,131) 

cs.gomp=rep(0,131) 

cs.gm=rep(0,131) 

cs.weib[status01==1]=x.weib[status01==1] 

cs.weib[status01==0]=x.weib[status01==0]+1 

cs.cp[status01==1]=x.cp[status01==1] 

cs.cp[status01==0]=x.cp[status01==0]+1 

cs.gomp[status01==1]=x.gomp[status01==1] 

cs.gomp[status01==0]=x.gomp[status01==0]+1 

cs.gm[status01==1]=x.gm[status01==1] 

cs.gm[status01==0]=x.gm[status01==0]+1 

Plotting the Cox-Snell residuals for all four models 

qq.test=rexp(1000,1) 

qqplot(cs.weib,qq.test,xlab="Weibull Residuals",ylab="Data Residuals",main="Cox-Snell 

Residual Plot\nWeibull Distribution",pch=16) 

abline(0,1,col="red") 

qqplot(cs.gomp,qq.test,xlab="Gompertz Residuals",ylab="Data Resdiauls",main="Cox-Snell 

Residual Plot\nGompertz Distribution",pch=16) 

abline(0,1,col="red") 

qqplot(cs.gm,qq.test,xlab="Gompertz-Makeham Residuals",ylab="Data Resdiauls",main="Cox-

Snell Residual Plot\nGompertz-Makeham Distribution",pch=16) 



45 

 

abline(0,1,col="red") 

qqplot(cs.cp,qq.test,xlab="Change Point Residuals",ylab="Data Resdiauls",main="Cox-Snell 

Residual Plot\nWeibull Change Point Model",pch=16) 

abline(0,1,col="red") 
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