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Abstract: Image segmentation is the process of dividing a digital image into individ-

ual segments which share similar visual characteristics. The Normalized Cut (NCut)

algorithm is one of the commonly used graph-based approaches in image segmenta-

tion. The NCut algorithm aims to extract big picture segments or global features

of an image, a process which closely resembles how a human would approach image

segmentation [1]. However, the algorithm is heavily dependent on a constant tun-

ing parameter that is subject to arbitrary assignment prior to running the algorithm.

This tuning parameter is independent of the image and indirectly specifies the level

of details in the image one requires from the segmentation. Given this shortcom-

ing, we propose a more flexible approach that introduces a local tuning parameter

for each pixel over a small neighborhood in the image. We believe that the tun-

ing parameter should represent the local variation of the features in the image in

order to correctly tune the necessary components in the segmentation process. In

particular, we look at improving the segmentations by introducing multiple “local-

variation” tuning parameters that are adjusted to specific regions of the image. We

do this through a semi-supervised method, where the regions are defined using the

segmentations of the original NCut algorithm. Through our methodology, we incorpo-

rate additional local variation into tuning the algorithm without sacrificing the global

features extracted by the original NCut algorithm. Results show that our method-

ology manages to improve the original NCut segmentations for some sample images.

Keywords: image segmentation, normalized cut algorithm, graph-based segmenta-

tion, flexibility, local variation, local neighborhood, semi-supervised method.

1 Introduction

Image segmentation is the process of dividing a digital image into individual segments

which share similar visual characteristics. Some important applications of image seg-

mentations are used in medical imaging, face recognition, fingerprint recognition and
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automated machine vision. In particular, image segmentation advancements in med-

ical imaging have helped medical practitioners to more accurately locate cancerous

cells, identify lung diseases [2], diagnose patients using Magnetic Resonance Imaging

(MRI), and automate gene identification [3].

There have been several developments in image segmentation algorithms in re-

cent years. Some popular methods for image segmentation are clustering methods,

histogram-based or thresholding methods, edge detection, partial differential Equa-

tion (PDE) methods, region growing methods, artificial neural networks and graph-

based methods [3,4]. Among these different approaches, graph-based segmentation

methods provide an intuitive framework for image segmentation. Graph-based seg-

mentation methods are grounded on spectral graph theory, a mathematical field that

has been well established and backed with strong mathematical rigor [5]. Further-

more, graph-based methods provide an intuitive framework representing pixels as

nodes in an image and the similarity as edges.

In this paper, we will explore improving the Normalized Cut Algorithm, a com-

monly used graph-based image segmentation algorithm. The Normalized Cut Al-

gorithm uses a global criterion, the normalized cut, to segment global features of a

graph-based image. In this paper, the global features of an image refer to the big

picture segmentations, whereas local features of an image refer to the more detailed

segmentations. For example, for an image of two people sitting on the beach, the

global features of that image might be the individuals, the sand, the sea and the

sky, whereas the local features of that image might be their clothes, sunglasses, and

their drinks. First, we introduce the Normalized Cut algorithm and briefly discuss

its theory and implementation. Second, we propose incorporating a “local-variation”

tuning parameter for the individual pixels in the image that will add flexibility to

the Normalized Cut algorithm. Third, we will discuss how we incorporate our “local-

variation” tuning parameters into the Normalized Cut algorithm. Fourth, we evaluate

the segmentation results of the more flexible Normalized Cut algorithm. Fifth, we

will asses the robustness of both the original and our proposed flexible Normalized

Cut algorithms on noisy images. Last, we will discuss our results and close with

future work.
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2 The Normalized Cut (NCut) Algorithm

The Normalized Cut (NCut) Algorithm is a graph based segmentation algorithm

proposed by Jianbo Shi and Jitendra Malik in the year 2000. The original NCut

Algorithm paper can be found at http://www.cs.berkeley.edu/~malik/papers/

SM-ncut.pdf. The motivation behind the NCut algorithm was to extract the global

features of an image, rather than focusing on the local features and their consistencies

in the image data [1].

In this section, we introduce some graph theoretic definitions and the Normalized

Cut criterion, and then present the Recursive 2-way NCut Algorithm. This algorithm

requires the input of a graph with weight edges computed from the image. After a

summary of the MATLAB implementation, we demonstrate the original NCut algo-

rithm on an example image. Last, we discuss the algorithm’s performance given the

choice of tuning parameters.

2.1 The Normalized Cut Criterion

Let G = (V,E) be an undirected weighted graph with a set of vertices V and a set of

unordered pairs of edges E, where each (i, j) ∈ E has an associated weight wij. The

weight, wij indicates the strength of the connection, or edges, between node i and

j. A strong connection between node i and j would have a high wij value, and vice

versa. Strong connections between a group of nodes generally indicates that these

nodes are very similar and belong as one cluster.

The graph G can be segmented into two disjoint subsets of the graph, G1 and

G2, if we remove the connecting edges between the sets G1 and G2. In graph theory,

the removal of these edges, or a cut, is a partition of graph vertices into two disjoint

subsets. The cut of a weighted graph G into two disjoint subsets G1 and G2 is defined

as:

cut(G1, G2) =
∑

i∈G1,j∈G2

wij (1)

Generally, two different graph clusters with weak connections between them will

have a small cut value if we partition them. Usually, the goal of segmentation is to

find a set of clusters that correspond to low cut values. The degree of a vertex, or
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node, in a weighted graph is the total weight of the edges incident to the node. Let

di be the degree of a node i in the graph. Then:

di =
∑
j

wij (2)

The volume of a subset G1 of a weighted graph represents how dense the subset

G1 is in terms of its edge weights. In general, a high volume value indicates that the

connections within the subset are strong. Let vol(G1) be the volume of the subset

G1. Then:

vol(G1) =
∑
i∈G1

di (3)

Then, the Normalized Cut criterion [1] is given as:

NCut(G1, G2) =
cut(G1, G2)

vol(G1)
+
cut(G1, G2)

vol(G2)
(4)

The Normalized Cut Algorithm minimizes the Normalized Cut(NCut) criterion.

In general, for two different graph clusters, strong internal connections within the

clusters indicate similar grouped nodes and weak connections between these clusters

indicate that these two clusters are different. Intuitively, by minimizing the normal-

ized cut criterion for groups G1 and G2, we find a cut such that the connections

between the newly partitioned groups are weak and that the nodes are evenly dis-

tributed so that the internal connections for the new groups are both evenly strong.

By minimizing the normalized cut criterion for G1 and G2, we try to find new bal-

anced partitions that gives a small cut value and strong internal connections for both

the partitions at the same time [6].

In solving this minimization problem in (4), let D be an N x N diagonal ma-

trix with degree d on its diagonal. Let W be an N x N symmetrical matrix with

W (i, j) = wij. The W matrix is known as the affinity matrix. Nodes with high affinity

will have high weight values, while nodes with low affinity will have low weight values.

Jian and Malik showed that the minimization problem of the NCut criterion in

(4) can be solved by solving the following generalized eigenvalue system:
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(D −W )x = λDx (5)

The second smallest eigenvector of the generalized eigensystem (5) is the real val-

ued solution to the NCut problem. Thus, we solve the eigensystem (5) for eigenvectors

and use the eigenvector with the second smallest eigenvalue to segment our graph or

image.

2.2 The Recursive Two-way NCut Algorithm

Let the image we are trying to segment be the set of pixels I.

1. Given the set of features, construct a weighted graph G = (V,E), compute the

edge weights W (i, j). In this application, the image I is the graph, and the

pixels are the nodes. Calculate the corresponding D matrix.

2. Solve (D −W )x = λDx for eigenvectors with the smallest eigenvalues.

3. Select the eigenvector with the second smallest eigenvalue to bipartition the

graph by finding the splitting point such that the NCut criterion is minimized.

4. Decide if the current partition should be subdivided by checking the stability

of the cut, and make sure that NCut is below the prespecified threshold.

5. Recursively repartition the segmented parts if necessary given the number of

segments specified by the user.

2.3 Constructing the Affinity Matrix

We need to define the edge weights wij prior to starting the recursive two-way NCut

Algorithm. In the original NCut algorithm, each entry wij in the affinity matrix W

is constructed as follows [1]:

wij = e
−‖F (i)−F (j)‖22

σF ∗

e
−‖X(i)−X(j)‖22

σX if ‖ X(i)−X(j) ‖2< R

0 otherwise
(6)

where, X(i) is the spatial location of node i

F (i) is a feature vector based on intensity, color, or texture information of node i

σF , σX are feature and spatial tuning parameters respectively
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For a black and white image, the feature (sometimes called intensity) of a pixel i,

F (i), takes values between 0 (black) and 255 (white). Note that, the weight wij = 0

for any pair of pixels i and j that are lying more than R pixels apart.

The parameter σF acts as a tuning parameter that controls how much of the

magnitude of the difference between features ‖ F (i) − F (j) ‖ are incorporated into

computing the edge weights. Since we are dividing − ‖ F (i) − F (j) ‖ by σF , a

smaller σF value decreases the affinity/weight values wij, thus resulting in less “tightly

grouped” pixels and a more local segmentation, and vice versa for high σF value

(examples in Section 2.6). Similarly, σX acts as a tuning parameter for the degree of

spatial features ‖ X(i)−X(j) ‖ that are used to compute the edge weights. In Jianbo

and Malik’s implementation of the NCut Algorithm in MATLAB, the default values

for the parameters are σF = 0.1, σX = 0.3, and R = 10. However, note that these

parameters σF , σX are constant and applied to all features in the image regardless of

the feature values. In this paper, we will instead focus on a more flexible local tuning

parameter σngbhd that hopefully will improve the segmentation.

2.4 Implementation in MATLAB

The creators of the algorithm, Malik and Shi, have generously made their implemen-

tation of the original NCut Algorithm in MATLAB available online at

http://www.cis.upenn.edu/~jshi/software/. In this research, we will be using

their implementation of the NCut Algorithm in MATLAB and focus on introducing

flexibility to the construction of the affinity matrix. On the next page, Figure 1 is a

summary of how their implementation of the NCut Algorithm works on images, with

increased focus on the construction of the affinity matrix.

The NCut algorithm first reads in an image of size m x m and constructs an

intensity matrix, I, of size m x m corresponding to the pixels in the image. As an

illustrative example, assume we have a black and white image. Then, the intensity

matrix, I, consists of the feature values, or intensity values of the pixels, ranging from

0 (black) to 255 (white). The intensity matrix I is then input into a MATLAB func-

tion called “ICGraph”. The ICGraph function does the following: (i) calculates the

edges of the image through the “computeEdges” function and returns the ‘EdgeMap’

of the image; (ii) computes the affinity matrix of the image, W , through the “com-

puteW” function using the ‘EdgeMap’ profile of the image.
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Figure 1: Summary of The NCut Algorithm Implementation with Focus on Affinity Construction

In the “computeEdges” function, the algorithm uses the Canny Edge Detector

and a Kalman Filter [7] to find the edges or contours of the image. The Canny Edge

Detector [8] is an algorithm that returns the edges in the image (more details on how

it works can be found in Section 3.3.1). The Kalman Filter is then used to filter out

the noise in the edges returned by the Canny Edge Detector to get smoother and more

accurate edges. With the smoother edges, the algorithm then builds an ‘EdgeMap’

profile that describes the gradients and coordinates of the edges in the image and the

magnitude of the pixel features. In the “computeW” function, the algorithm takes

in the ‘EdgeMap’ profile of the image and through the “cimgnbmap” function, does

a quick random sampling on the intensity matrix to create a sparse matrix of index

pairs representation of the edges according to the spatial component constraint in (6).

This sparse matrix of index pairs, together with the magnitude of the pixel features

in the ‘EdgeMap’ object, is then used to compute the affinity matrix tuned by the

σF tuning parameter (refered as ‘edgeVariance’ in Figure 1) (Recall Equation (6)).

Finally, the Affinity Matrix, W , is fed into the Recursive two-way NCut Algorithm
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described in Section 2.2.

2.5 The Original NCut Algorithm On An Example Image:

The Well Image

We run the original NCut Algorithm on an example image to illustrate its behavior

and performance. This example is a black and white image of a spiraling well from

our personal image repository. This well image has three height levels to it and tiny

little rocks between these levels. Then, these three levels are considered as the global

features and the tiny little rocks as local features of the image. This well image will

be the running illustrative example for the paper.

(a) A spiraling well (b) The segmentation with lines (c) The segmentation in color

Figure 2: (a) The “spiraling well” image example; (b)-(c) The segmentations of the well image, with

lines and in color, after running the original NCut algorithm with Segments = 6,

σF = 0.1, σX = 0.3, R = 10.

We chose six segments for the segmentation just for illustrative purposes. We see

similar segmentations with different number of segments as well. From Figure 1(b),

as expected from the NCut criterion, we can see that the original NCut algorithm

overall gives big picture, global segmentation. In this case, instead of focusing and

segmenting out the tiny little rocks in the image, the algorithm succeeds at segment-

ing out the group of little rocks as one whole group.

However, the algorithm is only somewhat successful at correctly grouping each of

the levels of the spiraling well image. Note that, the spiraling well image has three

levels to it, and there is a shadow of a tree (on the right of the image) cast upon

the different levels of the well. The original algorithm did not manage to correctly

segment the 2nd and 3rd level of the well image. First, one can see clearly from the

colored segmentation in Figure 1(c), the 2nd and 3rd level have been treated as one

group and then vertically segmented into half as two separate regions (brown and
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orange). This is obviously incorrect by inspection. Second, from Figure 1(b), there is

an additional segment (dark blue in Figure 1(c)) included in the segment of the 2nd

level of the well image. Third, from Figure 1(c), the algorithm incorrectly segments

the teal colored group of rocks. In this teal colored segment, part of the tree shadow

was incorrectly grouped with the rocks in the segment.

For this well example, a reasonable segmentation would be to correctly segment

out each of the individual levels of the well as a whole. In summary, the original NCut

algorithm succeeds at giving a global segmentation but gives somewhat reasonable

segments that are not sensitive at picking up local variation in the image. We try

to add flexibility and improve its performance by constructing the affinity matrix

through local tuning. With our proposed methodology, we address the problems

that arose from the original NCut segmentations on the well image and give a more

reasonable and flexible segmentation of the well image.

2.6 Varying Constant Values of σF

The previous segmentation result in Figure 2(b) and (c) used a fixed and pre-determined

σF value. We first tried varying different constant values of σF to see how they affect

the segmentations. In particular, we would like to see (i) how sensitive the segmen-

tations are to different constant values of σF ; and (ii) how well these constant values

perform on the segmentation process for the well image.

As mentioned before in Section 2.3, when constructing the affinity matrix, since

we are dividing − ‖ F (i)−F (j) ‖ by σF , a lower σF value means we want more of the

magnitude of the image features to be taken into account when computing the edge

weights, thus resulting in less tightly grouped pixels and a more local segmentation,

and vice versa for high σF value.

Recall that in the original NCut algorithm, σF = 0.1. We tried a range of σF

values and present results for 1.0, 0.5, 0.1, 0.05, 0.01 and 0.005. The segmentations

for the image stayed the same for values of σF below 1.0 and above 0.005. The seg-

mentations are shown in Figure 3 on the next page.

From Figure 3, one can see as the σF decreases from 1.0 to 0.01, the segmentations

become more local (more detailed) and less global (less detailed). For example, at the
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(a) σF = 1.0 (b) σF = 0.5 (c) σF = 0.1

(d) σF = 0.05 (e) σF = 0.01 (f) σF = 0.005

Figure 3: (a)-(f) Segmentation results for various fixed σF values

extreme ends, when σF = 1.0, the image is segmented into large unstructured seg-

ments, and when σF = 0.01, the segmentation is more detailed in that the algorithm

picked up the tiny little rocks in the image. However, for the extreme σF values of

1.0 and 0.01, the segmentations are, respectively, either too global or too detailed.

Interestingly, when σF = 0.05, the original algorithm gives a reasonable segmentation

of the well image. We see that the algorithm is sensitive to the values of σF , and dif-

ferent values give reasonable segmentations in different parts of the image. Given that

σF is fixed, we seek to add flexibility to the algorithm by automatically finding the

appropriate σF values for specific regions in the image using the local variation of the

image features. Furthermore, we would like to have individual σF values for different

areas in the image to further localize and better fine tune the original segmentation

result.

3 A More Flexible Approach: A Shape-Based “Local-Variation”

Tuning Matrix

In this section, we propose a more flexible way to construct the affinity matrix of an

image that might improve the segmentation result of the original algorithm. In the

following subsections, we will give the various approaches that we have tried leading

to our final methodology.
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To serve as a general overview of how our final methodology works, we will provide

a quick discussion of the intuition behind it. Notice that the constant σF parameter

in Equation (4) is applied to all values of ‖ F (i)− F (j) ‖ and the parameter is inde-

pendent of the features F (i), F (j) at nodes i, j in the image I.

Unfortunately, the constant value σF may not appropriately scale the magnitude

of the difference between features ‖ F (i) − F (j) ‖ in the computation of the edge

weights. We think σF will serve as a better tuning parameter if we incorporate local

tuning parameters in different areas of the image and obtain local information about

the image. Hence to achieve that, for each pixel, we introduced a new σngbhd tuning

parameter as a function of the local variation of the features F in the image. We

believe a more accurate description and structure of the edge weights can be achieved

if the magnitude of the difference between features are tuned according to the local

variation of the features themselves [9]. Furthermore, having a specific local tuning

parameter for each pixel allows for self tuning in the affinity matrix without the need

of selecting a single constant σF value [9].

By doing this, we now have varying values of σngbhd for each pixel. As we will

see later in the image example in Section 3.2, having too many different values of

σngbhd might give a “patchy” and over local segmentation. Hence, to smooth out the

patchy segmentation, for particular regions of interest in the image, we set the σngbhd

value to be a single constant value which is the most frequently occurred mode σngbhd

value for each of those regions. We believe the mode value for a particular region

may best describe the appropriate local constant σngbhd value. Most importantly, by

introducing the use of regions, we believe that we can add flexibility to the NCut

algorithm to customize and tune the edge weights according to specific image regions

of interest. One natural way to choose these regions of interest is to use the segments

from the original NCut algorithm.

In summary, to add flexibility to the NCut algorithm and to improve the origi-

nal segmentation, we proposed the following methodology: we first introduce ‘local-

variation’ tuning parameters, σngbhd, as a function of the local variation of the neigh-

borhood features around each pixel; then second, smooth these varying values of

σngbhd by taking the mode of σngbhd values of particular regions in the image; third,
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apply these single constant mode values of each region accordingly to the computation

of the weight edges. We believe by doing that, we are able to better tune the local

features when computing the edge weights. These multiple parameters that are func-

tions of the local variation of the features F add flexibility to the NCut algorithm are

constant for specific regions of the image to preserve some aspects of the big picture.

3.1 “Local-Variation” Tuning Parameter

As mentioned before, one problem with the current implementation of the σF tuning

parameter is its lack of dependence on the local features of the image I. Recall from

the spiraling well image in Figure 1(b), the original NCut algorithm gave unreasonable

segments. We believe this may be due to the global tuning parameter, σF ’s, lack of

dependence on the local variation of the image features. In a way, the scale parameter

must “understand” the local variation of the features in the image in order to correctly

tune the feature difference between two pixels. We try to improve this by introducing

a “local-variation” tuning parameter for each pixel i, σngbhd(F (i), r). This new tuning

parameter, σngbhd(F (i), r) is defined as the standard deviation of the neighborhood

features around pixel i of radius r. For an image I of size m x m, the local-variation

tuning parameter for any pixel i with position index (p, q) in the image matrix of size

r = 1, σngbhd(F (i), r = 1), is defined as follows:

σngbhd(F (i), r = 1) =

√√√√√√√√√√√√
var



. . .
... . .

.

F (i−m− r)p−r,q−r F (i−m)p−r,q F (i−m+ r)p−r,q+r

· · · F (i− r)p,q−r F(i)p,q F (i+ r)p,q+r · · ·
F (i+m− r)p+q−r F (i+m)p+r,q F (i+m+ r)p+r,q+r

. .
. ...

. . .



for i = 1, . . . ,m2 and some p, q ∈ {1, . . . ,m}
(7)

Note that, by definition, varngbhd = σ2
ngbhd.

For example, let I be a 5 x 5 image. This image contains a total of 25 pixels with

each pixel i labeled from i = 1, . . . ,25 starting from the top left pixel and ending

at the bottom right pixel. For instance, the first pixel of the image, i = 1, will be
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located at position (1,1) in the image matrix, and the last pixel of the image, i = 25,

will be located at position (5,5) in the image matrix. Each pixel i has features, F (i),

associated with it. Then, the feature neighborhood of radius 2 (r = 2) of 13, F (13),

is illustrated as follows:

Figure 4: Neighborhood of radius 2 of the feature of pixel 13, F(13)

3.1.1 Computing varngbhd(F (i), r)

There are several ways to compute varngbhd(F (i), r). In the following subsection, we

define two methods. The first is to have equal weights on the neighborhood rings in

the variance and the second is to have exponential weights as functions of the radius

of the different neighborhood rings in the variance.

We will use two neighborhood rings as an example for this subsection, but note

that the same principles hold for using r rings. We first define the following:

Ring 1 =



. . . . .
.

∗ ∗ ∗ ∗ ∗
∗ F (i−m− 1)p−1,q−1 F (i−m)p−1,q F (i−m+ 1)p−1,q+1 ∗
∗ F (i− 1)p,q−1 F(i)p,q F (i+ 1)p,q+1 ∗
∗ F (i+m− 1)p+1,q−1 F (i+m)p+1,q F (i+m+ 1)p+1,q+1 ∗
∗ ∗ ∗ ∗ ∗

. .
. . . .


,
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Ring 2 =



. . . . .
.

F (i− 2m− 2)p−2,q−2 F (i− 2m− 1)p−2,q−1 F (i− 2m)p−2,q F (i− 2m+ 1)p−2,q+1 F (i− 2m+ 2)p−2,q+2

F (i−m− 2)p−1,q−2 ∗ ∗ ∗ F (i−m+ 2)p−1,q+2

F (i− 2)p,q−2 ∗ F(i)p,q ∗ F (i+ 2)p,q+2

F (i+m− 2)p+1,q−2 ∗ ∗ ∗ F (i+ 2m+ 2)p,q+2

F (i+ 2m− 2)p+2,q−2 F (i+ 2m− 1)p+2,q−1 F (i+ 2m)p+2,q F (i+ 2m+ 1)p+2,q+1 F (i+ 2m+ 2)p+2,q+2

. .
. . . .



F̄ = grand mean of neighborhood features =
1

n

 ∑
F (i)∈

Ring 1 ∪ Ring 2

F (i)

 , where n = |Ring 1 ∪Ring 2|

Note that the union of Ring 1 and Ring 2, Ring 1 ∪ Ring 2, is just the neighbor-

hood of radius 2 (r = 2) of the feature of pixel i. Compared to Figure 4, the union of

these two rings is just another illustration of a neighborhood for r = 2 for the feature

of any pixel i in a m x m sized image.

Equal Weights on the Neighborhood Rings

For any pixel i, we let varngbhd(F (i), r) have equal weight components. For example,

for an image I with size m x m, for r = 2, the parameter varngbhd(F (i), r = 2) with

equal weight components is defined as follows:

varngbhd(F (i), {r = 2}) =
|Ring 1|
n− 1︸ ︷︷ ︸
w1

∑
F (i)∈Ring 1

(F (i)− F̄ )2 +
|Ring 2|
n− 1︸ ︷︷ ︸
w2

∑
F (i)∈Ring 2

(F (i)− F̄ )2

where w1 + w2 =
n

n− 1
(8)

We choose the weights w1, w2 such that the pixels will have the same total weight

as they would in the sample variance, n
n−1

. To clearly visualize the local-variation

σngbhd values of an image for a particular r using equal weights on the neighborhood

rings, we present a heatmap of the equal weighted neighborhood rings σngbhd values

of the well image. A heatmap is a graphical representation of the data values relative
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to themselves indicated by varying contrast of a color (usually, red color is used to

signify ‘heat’). For example, a darker red color in a specific region indicates that the

values in that region are relatively lower, and a brighter red color in another region

indicates that the values in that region are relatively higher.

We present different heatmaps of the equally weighted σngbhd values for the well

image for different neighborhood radius values, r = 1,2,3,4,5,6 in Figure 5 below:

(a) r = 1 (b) r = 2 (c) r = 3

(d) r = 4 (e) r = 5 (f) r = 6

Figure 5: (a)-(f) Heatmaps of the equal weighted neighborhood ring σngbhd values for r = 1 to 6.

As one can see from Figure 5, as r increases from 1 to 6, more regions in the

different heatmaps have increasingly brighter red color. As the neighbohood radius r

increases, we have higher σngbhd values in general. As the neighborhood r increases,

the neighborhood size for the computation of σngbhd(F (i), r) for each pixel i increases,

which then allows σngbhd(F (i), r) to detect local neighborhood variation in features

extending further around each pixel i. Since this well image has varying feature in-

tensity for different well levels, the equally weighted σngbhd value increases for each

pixel. In particular, as the neighborhood radius r increases, one can see the increas-

ingly bright red color on the contour lines of the well levels as each σngbhd value on

the contour lines manages to capture the variation of the different feature intensities

across the different levels of the well. We are also less able to distinguish the different

shapes of the image with high r values.
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Exponential Weights as Functions of the Radius of the Different Neighborhood Rings

To further fine tune our local-neighorhood parameter, we let varngbhd(F (i), r) have

exponential weight components on the rings. We want the neighborhood features

closer to pixel i, in a decaying fashion, to be given more importance/weight in the

variance computation. We would like varngbhd(F (i), r) to be more sensitive towards

the neighborhood features closer to pixel i.

For example, for an image I with sizem xm, for r = 2, the parameter varngbhd(F (i), {r =

2}) with exponential weight components is defined as follows:

varneighborhood(F (i), {r = 2}) =
exp(−{r = 1})∑r

i=1 exp(−i)
· |Ring 1|
n− 1︸ ︷︷ ︸

w1

∑
F (i)∈Ring 1

(F (i)− F̄ )2

+
exp(−{r = 2})∑r

i=1 exp(−i)
· |Ring 2|
n− 1︸ ︷︷ ︸

w2

∑
F (i)∈Ring 2

(F (i)− F̄ )2

where w1 + w2 =
n

n− 1

(9)

Note that each exponential weight is a function of the radius r for the specific

ring of the neighborhood. The notation exp(−{r = 1}) is meant to illustrate that

the value 1 taken as an input to the exponential function is just the radius for Ring

1 of the neighborhood. We again choose the weights w1, w2 such that the pixels will

have the same total weights as they would in a sample variance, n
n−1

.

We present different heatmaps of the exponentially weighted σngbhd values for the

well image for different neighborhood radius values, r = 1,2,3,4,5,6 in Figure 6 on the

next page.

In Figure 6, similar to Figure 5, as r increases from 1 to 6, slightly more regions

in the different heatmaps have increasingly brighter red color. However, in contrast

to Figure 5, the rate at which the bright red color expands to other regions in image

is slower and more contained. Since each of the rings in the neighborhood are expo-

nentially weighted in the computation of σngbhd(F (i), r) for each pixel i, the σngbhd

value for each pixel grows more slowly as the neighborhood size r increases. In other
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(a) r = 1 (b) r = 2 (c) r = 3

(d) r = 4 (e) r = 5 (f) r = 6

Figure 6: (a)-(f) Heatmaps of exponentially weighted neighborhood rings σngbhd values of for r = 1

to 6.

words, with exponentially weighted rings, outer rings are less important and increas-

ing the neighborhood size r does not have that much of an effect on increasing the

σngbhd value. We are still able to distinguish the different shapes for higher values of r.

3.2 Incorporating the Local Tuning Parameters into the Affin-

ity Matrix

We choose computing σngbhd using exponential weights on the neighborhood rings.

Although the exponentially weighted σngbhd is statistically biased (need to explain

why), hopefully by introducing bias, we can reduce the overall variance of the affinity

matrix.

Let Σngbhd(r) be a m x m matrix of local-variation tuning parameters for a m x m

image. Each entry (p, q) of Σngbhd(r) is just σngbhd(F (m∗p−m+q), r) . In particular,

the Σngbhd(r) matrix is defined as follows:
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Σngbhd(r) =


σngbhd(F (1), r) . . . . . . σngbhd(F (m), r)

...
. . .

...
...

. . .
...

σngbhd(F (m2 −m+ 1), r) . . . . . . σngbhd(F (m2), r)

 (10)

Now, using each entry in Σngbhd, we can update Equation (4) to the following:

wij = exp{− ‖ F (i)− F (j) ‖2
2 ∗(σngbhd(F (i), r) · σngbhd(F (j), r))}

∗

e
−‖X(i)−X(j)‖22

σX if ‖ X(i)−X(j) ‖2< R

0 otherwise

for i = 1, . . . ,m2

(11)

One advantage of tuning the features by the joint multiplication of the σngbhd(F (i), r)·
σngbhd(F (j), r)) pairs is to capture the correlation of the neighborhood features be-

tween pixel i and pixel j in constructing the weight edges. Note that in this updated

Equation (11), the spatial component ‖ X(i)−X(j) ‖2< R is unchanged from previ-

ous Equation (4). We present other possible incorporation methods later in Section 4.

In our version, note that we are multiplying, instead of dividing, − ‖ F (i)−F (j) ‖2
2

by σngbhd(F (i), r) · σngbhd(F (j), r)). This choice is simply due to the method of con-

struction of our tuning parameter. For a given radius r, if the σngbhd(F (i), r) is low,

the local neighborhood variation of the features around pixel i will be low, implying

that the pixels within the neighborhood share similar feature values, indicating group

structure among the pixels. In the original NCut algorithm, Shi and Malik divided

the features − ‖ F (i)−F (j) ‖2
2 by a small σF value which is similar to us multiplying

the features by a large σngbhd(F (i), r) · σngbhd(F (j), r)) value.

Similarly, for a given neighborhood radius r around pixel i and pixel j, if the

pixels within and around each neighborhood of pixels i and j are similar in terms of

their local feature values, then σngbhd(F (i), r) · σngbhd(F (j), r)) will be low, making

wij = exp[− ‖ F (i)−F (j) ‖2
2 ∗(σngbhd(F (i), r) ·σngbhd(F (j), r))] high. We want pixels

that are similar to its neighbors to have strong weight connections in the affinity
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matrix.

After incorporating Σngbhd(r) with r = 3 into the affinity matrix according to

Equation (11), we run the NCut algorithm using the other pre-specified parameter

values (Segments = 6, σX = 0.3, R = 10). The segmentation results for the well

image is shown below in Figure 7:

(a) Flexible Segmentation (b) Flexible Segmentation (color)

Figure 7: (a)-(b) The NCut segmentation after incorporating Σngbhd(r = 3) with Segments = 6, σX

= 0.3, R = 10

Note that a higher r would give a more local segmentation and a lower r would give

a more global segmentation. We tried r from 1 to 6 and we chose r = 3 as a middle

ground for illustration purposes. From the result in Figure 7 above, we can see that

the segmentation is patchy and more local than the original segmentation. From our

perspective, we believe that this segmentation is too detailed. Instead, we would like

to find a more global segmentation than Figure 7(a) but still be able to add flexibility

to the construction of the affinity matrix. We believe since the Σngbhd(r) contains

multiple different varying values σngbhd for most pixels, incorporating these values in

computation of the weight edges apparently gives rough, non-uniform segmentation.

Thus, to fix this, we seek to smooth out the varying values in the Σngbhd(r) matrix

by first finding ‘reasonable’ regions in the image corresponding to the same regions

in Σngbhd(r), and then for a specific region, find a single constant σngbhd measure that

most appropriately represents the σngbhd values in that region.

3.3 Shape-Based Local-Variation Tuning Matrix, Σshaped

Our goal now is to construct a Shape-Based Local-Variation Tuning matrix, Σshaped.

We find certain ‘shaped regions’ of interest in the image, and then find a representa-

tive σngbhd value from the corresponding region in the Σngbhd matrix. Finding these

regions allow us to customize and tune the weight edges according to specific image
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regions of interest.

To illustrate the concept of Σshaped(r) more clearly, assume we have a digital image

of size 5 x 5 and we have constructed a corresponding Σngbhd(r) of 5 x 5 from it:

(a) Selected Regions of Σngbhd(r) (b) The Final Σshaped−ngbhd(r)

Figure 8: The Final Σshaped−ngbhd(r)

Then, since the image and Σngbhd(r) share the same pixel locations, we select three

‘shaped regions’ in the image and the corresponding three regions in Σngbhd(r) as

shown in Figure 8(a). To construct the Shape-Based Local-Variation Tuning Matrix,

Σshaped(r) shown in Figure 8(b), for each region, we find a representative aggregate

measure of the σngbhd values and replace them by that aggregate measure, σRegion.

For example, for Region 1, we might take the mode of the σngbhd values and replace

them with that mode value, σRegion1. Mathematically,

σRegion1 = mode ({σngbhd(F (i), r) : σngbhd(F (i), r) ∈ Region 1} ) (12)

So, how do we choose these ‘shaped regions’? A natural way to pick these regions

is to just use the segments from the original NCut algorithm. There are two advan-

tages in doing this. One, instead of blindly picking random regions, the original NCut

segments give a good starting segmentation for our procedure. Two, if the original
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segments are somewhat reasonable, we are able to further improve and fine tune our

affinity matrix at these regions to give a better and more accurate segmentation.

Then, how do we find a single representative aggregate measure, σRegion of the

σngbhd values for a specific region? There are several possibilities. For a particular re-

gion, we could take the equal-weighted mean, exponentially-weighted mean, median,

mode, equal-weighted variance, decaying-weighted variance, or a combination of any

of the above of the σngbhd values to find σRegion. We have experimented with all of the

measures mentioned above, and found the mode measure works best. Among the

aggregate measures mentioned, using the mode gave the least extreme local segmen-

tation. Intuitively, the mode measure makes sense: since for a particular region, given

that the σngbhd values are a function of the neighborhood around them, there will be

some σngbhd values that include information from pixels outside its region; hence, we

want the σngbhd value that occurs most frequently, which most likely represent the

local variation of the features in that specific region. If there is a region with no

repeating σngbhd values, the mode chooses the lowest σngbhd value. In this case, the

lowest σngbhd value will give high affinities to the pixels in that region, indicating a

group structure which is no other than the original NCut segment itself.

In summary, to construct our final Σshaped(r) matrix, we first use the original

NCut segments as the selected regions in the Σngbhd(r) matrix,and then second, for

each region in the Σngbhd(r) matrix, we replace all the σngbhd values in that region

with the mode value.

Shown in Figure 9 on the next page are heatmaps of the Σngbhd(r) matrix and the

Σshaped(r) matrix constructed using six original NCut segments, with neighborhood

radius r = 3.

As expected, in Figure 9(b), the heatmap shows that the Σshaped(r = 3) only

has six unique values. The Σshaped(r = 3) has uniform σregion values at only specific

regions in the image. Compared to the heatmap of Σngbhd(r = 3) in Figure 9(a),

Σshaped(r = 3) has more uniform values than the values in Σngbhd(r = 3). By con-

structing the Σshaped matrix, we have managed to smooth the varying σngbhd values

as desired. Again, we do this to construct a more uniformly tuned affinity matrix to

get a more desired global segmentation but also allow flexibility in the algorithm in
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(a) Heatmap of Σngbhd(r = 3) ma-

trix

(b) Heatmap of Σshaped(r = 3)

matrix with six regions

Figure 9: (a)-(b) Heatmaps of the Σngbhd(r = 3) and the Σshaped(r = 3) matrix of the well image

the tuning of the edge weights. One possible weakness of this approach is that it is

highly dependent on the original NCut segments. If the original NCut segments are

really off and unstructured (for example, Figure 3(a)), the Σshaped matrix will assume

unstructured regions as well.

Using the well image, we construct our Shape-Based Local-Variation Tuning ma-

trix of radius 3, Σshaped(r = 3), and then incorporate it into the affinity matrix using

Equation (11). The original segmentation and the segmentation using our methodol-

ogy for the well image are both shown below:

(a) Original segmentation (b) Shape-based flexible segmenta-

tion

(c) Shape-based flexible segmenta-

tion (color)

Figure 10: (a) The original NCut segmentation with σF = 0.1; (b)-(c) The NCut segmentation after

incorporating Σshaped(r = 3); shared parameters: Segments = 6, σX = 0.3 and R = 10.

From Figure 9, we can see that the segmentation result using our proposed

methodology outperformed the original segmentation result in Figure 9(a). Recall

from our discussion and using our definition of reasonable in Section 2.5, the original

algorithm failed to give a reasonable segmentation of the well image. Clearly, compar-

ing both Figures 9(a) and 9(b), our proposed method gave more reasonable segments.

Our improved algorithm has successfully segmented out the 2nd level of the well im-

age given the existence of the tree shadow. Note that our segmentation result is still
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not entirely perfect. By inspection, there are still some levels of the well image that

are not segmented correctly. For example, the 3rd level at the bottom of the image

was not segmented out as a cluster by itself. However, our segmentation result is still

an improvement from the original segmentation. Using our proposed methodology,

we may be able to improve the original segmentation results of the well image. In the

following subsection, we will look at some modifications to the construction of the

Σshaped matrix in hopes to further improve our segmentation result.

3.3.1 Some Modifications to The Construction of the Σshaped Matrix

In this subsection, we will use a different image example, an image of a bear hiding

behind tall grass. This image was taken from The Berkeley Segmentation Dataset and

Benchmark at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

Shown below are Figures of the original image, and the segmentation results from the

original NCut algorithm and from using our proposed methodology:

(a) A bear behind tall grasses (b) Original segmentation (c) Shape-based flexible segmenta-

tion

Figure 11: (a) A bear behind tall grasses image example; (b) The original NCut segmentation; (c)

The NCut segmentation after incorporating Σshaped(r = 6); shared parameters: Segments = 5, σX

= 0.3 and R = 10.

From the above Figure, we can see that the original NCut algorithm did not man-

age to segment out the bear from the tall grasses. On the other hand, our shape-based

flexible NCut algorithm managed to segment out the bear from the tall grass. How-

ever, our algorithm fails to put the bear’s right ear in the same segment as the bear.

Canny Enhanced Σshaped Matrix

Here, we try to improve our segmentation result by using the Canny Edge Detector

to enhance the construction of the Σshaped matrix. The Canny Edge Detector is a

algorithm that detects edges in an image using the gradient in the pixel features [8].

In general, an edge of a digital image is characterized by the sudden change in feature
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values on each side of the edge. The Canny Edge method then detects edges by find-

ing large gradients or changes in feature values between pixels. The result of running

the standard Canny Edge Detector on the bear image can be seen in Figure 12(a).

Using the Canny Edge Detector, we find the edges in the image, and then replace

the values in Σshaped with the values in Σngbhd corresponding to the Canny edges.

Through this method, we incorporate the σngbhd values along the image edges into

the Σshaped matrix. This way, the σngbhd values along the image edges are represented

in the Σshaped matrix instead of just aggregate values. This would help the Σshaped

better identify edges in the image.

Below are the segmentation results:

(a) Canny edges (b) Shape-based flexible segmenta-

tion

(c) Canny enhanced shape-based

flexible segmentation

Figure 12: (a) The edges generated from the Canny Edge Detector; (b)-(c) The NCut segmentations

after incorporating Σshaped(r = 6) and Canny Enhanced Σshaped(r = 6), respectively, with Segments

= 5, σX = 0.3 and R = 10.

From Figure 12 above, we can see that this Canny enhanced method did not help

improve our segmentation. In this case, the Canny enhanced method makes the seg-

mentation result worse. This new method does not only fail at grouping the right ear

of the bear, it also lost the left ear of the bear in the segmentation. It is not surprising

to see that the Canny enhanced method gave similar results to the shape-based flex-

ible NCut segmentation. The Canny enhanced method only introduced a relatively

small number of σngbhd values into the Σshaped matrix, while most of the values in

Σshaped matrix are still dominated by the σRegion values. Thus, the relatively small

number of σngbhd values in the Σshaped matrix did not really affect the segmentation.

Bounding Box Method

Here, we try to improve our segmentation by defining a bounding box around each

of our original NCut segments and hence extending the bounds used to compute the
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σRegion values. The motivation behind the use of the box was to incorporate more

local information in the shape-based flexible NCut segmentation. By doing this, we

include a larger region when computing the σRegion mode value for a specific region

to capture possible missing variations surrounding the edges that region. We hoped

that including more neighboring σngbhd values might better inform the distribution of

the σngbhd values of a specific region and obtain a more representative mode value .

Below are the segmentation results:

(a) Shape-based flexible segmenta-

tion

(b) Bounding box enhanced shape-

based flexible segmentation

Figure 13: (a)-(b) The NCut segmentations after incorporating Σshaped(r = 6) and the Bounding

Box Enhanced Σshaped(r = 6), respectively, with Segments = 5, σX = 0.3 and R = 10.

From Figure 13, we can see that this bounding box bound method did not help

improve our segmentation result at all. This bounding box bound method resulted in

the same original segmentation in 13(a). The bounding box method which extends

the size of the original NCut segments for the computation of the σRegion values did

not change the segmentation. Given that a original NCut segment was already large,

adding a bounding box around it only includes a relatively small number of extra

σngbhd values to the larger boxed region, and taking the mode of the larger boxed re-

gion to compute σRegion will most likely result in the same mode value of the original

NCut segment itself in the Σshaped matrix since the majority of the σngbhd values are

in the smaller original NCut segment.

Exponentially Weighted Variance Measure for σRegion Values

Here, we try to improve our segmentation result by exploring the use the exponen-

tially weighted variance as the aggregate measure of σRegion values instead of using the

mode measure. We would like to look at the variation of the σngbhd values themselves.

The segmentation result is shown in Figure 14 on the next page.
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(a) Shape-based flexible segmenta-

tion

(b) Exponentially weighted vari-

ance shape-based flexible segmen-

tation

Figure 14: (a)-(b) The NCut segmentations after incorporating Σshaped(r = 6) and after using

exponentially weighted variance to compute σRegion values, respectively, with Segments = 5, σX =

0.3 and R = 10.

From Figure 14, we can see that this exponentially weighted variance method did

not help improve our segmentation result. Taking the variance of a variance measure

resulted in a smaller value. Hence, the decaying variance method gave really small

σRegion values, resulting in too global and unstructured segments (compare to Figure

3(a)). This decaying variance method performs the worst among them all.

In conclusion, none of our modified methods helped at further improving our

NCut segmentations. So far, our shape-based flexible NCut algorithm is still the

better option.

4 Incorporating Σshaped into the Affinity Matrix

Recall from section 3.2, we explored one possibility of incorporating Σshaped into the

affinity matrix using Equation (11). Recall that the advantage of tuning the features

by the join multiplication of the σngbhd(F (i), r)·σngbhd(F (j), r)) pairs in Equation (11)

is to capture the correlation of the neighborhood features between pixel i and pixel j

in constructing the weight edges. In this section, we explore two additional ways to

incorporate Σshaped values into the affinity matrix through incorporating the σRegion

values into computing the edge weights.

4.1 Method 1: Tuning Each Individual Feature

In this approach, we individually tune each pixel’s features by its corresponding σngbhd

value. For example, for local features F (i), F (j), we individually multiply F (i) by
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σngbhd(F (i), r) and individually multiply F (j) by σngbhd(F (j), r). That is,

wij = exp{− ‖ F (i) · σngbhd(F (i), r)− F (j) · σngbhd(F (j), r) ‖2
2}

∗

e
−‖X(i)−X(j)‖22

σX if ‖ X(i)−X(j) ‖2< R

0 otherwise

(13)

Shown below is the segmentation result of the well image using our Σshaped method-

ology but incorporated the affinity matrix using Equation (13) instead:

(a) Shape-based flexible segmenta-

tion

(b) Shape-based flexible segmenta-

tion with Method 1

(c) Shape-based flexible segmenta-

tion with Method 1 (color)

Figure 15: (a) The shape-based flexible NCut segmentation; (b)-(c) The NCut segmentations after

incorporating Σshaped(r = 3) using Equation (13); shared parameters: Segments = 6, σX = 0.3 and

R = 10.

As one can see from Figure 15(b) above, the shape-based flexible NCut algorithm

using Method 1 did not manage to give reasonable segments compared to the shape-

based flexible NCut segmentation in Figure 15(a). Using Method 1, the shape-based

flexible NCut algorithm only managed to partially segment out the 2nd level of the

well. Furthermore, similar to the original NCut segmentation in Figure 10(a), the

shape-based flexible NCut algorithm using Method 1 did not manage to segment out

the 3rd level of the well at the bottom of the image and “broke” the 3rd level up.

4.2 Method 2: Tuning Joint Features via Joint Addition

In this method, compared to Equation (11), instead of multiplying, we looked at

adding the σngbhd(F (i), r) and σngbhd(F (j), r) pairs and then scale − ‖ F (i)−F (j) ‖2
2.

This joint addition effect allow us to take into account the total independent local

variation of pixels i and j. That is,
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wij = exp{− ‖ F (i)− F (j) ‖2
2 ∗(σngbhd(F (i), r) + σngbhd(F (j), r))}

∗

e
−‖X(i)−X(j)‖22

σX if ‖ X(i)−X(j) ‖2< R

0 otherwise

(14)

Shown below is the segmentation result of the well image using our Σshaped method-

ology but incorporated the affinity matrix using Equation (14) instead:

(a) Shape-based flexible segmenta-

tion

(b) Shape-based flexible segmenta-

tion with Method 2

(c) Shape-based flexible segmenta-

tion with Method 2 (color)

Figure 16: (a) The original NCut segmentation; (b)-(c) The NCut segmentations after incorporating

Σshaped(r = 3) using Equation (14); shared parameters: Segments = 6, σF = 0.1, σX = 0.3 and R

= 10.

As one can see from Figure 16 above, using Method 2, the shape-based flexible

NCut algorithm gives a more ‘patchy’ segmentation compared to the original NCut

segmentation. Since Method 2 aims to capture the total local variation between inde-

pendent pixels i and j, we would expect to see a high joint additional tuning effect on

the features, resulting in a more local segmentation. As mentioned before, comparing

to Figure 16(b), we are looking for a more global segmentation but incorporate suffi-

cient flexibility and local variation to the segmentation. Furthermore, similar to the

original NCut segmentation in Figure 16(a), the shape-based flexible NCut algorithm

using Method 2 in Figure 16(b) did not manage to segment out the 3rd level of the

well at the bottom of the image and “broke” the 3rd level up.

In summary, comparing Figure 16(b), 15(b) and 10(b), using Equation (11) on the

shape-based flexible NCut algorithm gives the most reasonable segmentation. Thus,

for our choice of approach, we use Equation (11) in our shape-based flexible NCut

algorithm. In this paper, the phrase “shape-based flexible NCut algorithm” will now

refer to using Equation (11) to incorporate Σshaped into the NCut algorithm.
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5 Evaluating Segmentation Results

In this section, we will try to evaluate our shape-based flexible segmentation result

using existing evaluation measures. We also use these measure to find an appropriate

r parameter for our Σngbhd(r) matrix values that gives the “best” segmentation. We

explored three evaluation measure for our segmentation results: the CH Index [10],

the Silhouette Measure [11], and the Gap Statistic [12].

5.1 CH Index

The CH Index is an intuitive evaluation measure that uses the ratio of the Between

Cluster Sum of Squares (BCSS) and the Within Cluster Sum of Squares (WCSS) of

the segmentation. The BCSS measures how segments are different among each other.

A high BCSS value indicates that individual segments are very different from each

other, what we expect from a good segmentation. The WCSS measures how different

the pixels are within each segment. A low WCSS value indicates that pixels within

their segments are very similar, again is what we expect from a good segmentation.

In particular, WCSS, BCSS and ultimately the CH Index are defined as follows:

Recall, F̄grand = grand mean of features =
1

n

n∑
i=1

F (i)

Then, BCSS(K) =
K∑
j=1

∑
F (i)∈Gj

|Gj|· ‖ F (i)− F̄grand ‖2
2 (15)

WCSS(K) =
K∑
j=1

∑
F (i)∈Gj

‖ F (i)− F̄j ‖2
2 (16)

And,

CH(K) =
BCSS(K)/(K − 1)

WCSS(K)/(n−K)

where, K = number of segments,

n = total number of pixels and,

Gj = segment j

(17)
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Generally, a “good” segmentation will have a high BCSS value and a low WCSS

value. Thus, we choose K, the number of segments, that gives the highest CH index.

5.2 Average Silhouette Measure

The average silhouette measure, Silhouetteavg is a measure of how closely grouped

pixels are within their own segments and how loosely these pixels might be matched on

average to pixels from neighboring segments. A silhouette measure close to 1 implies

that the pixels are, on average, in their appropriate segments, while a silhouette close

to -1 implies that the pixels, on average, have been assigned to the wrong segments.

In particular, the average silhouette measure is defined as follows:

Silhouetteavg(K) =
1

K

K∑
j=1

1

nj

n∑
i=1

Si

where, Si =
b(i)− a(i)

max[a(i), b(i)]

(18)

a(i) = the average squared Euclidean distance from the ith pixel to the other pixels

in the same segment as i, and

b(i) = the minimum average distance from the ith pixel to pixels in a different

segment, minimized over all segments

5.3 Gap Statistic

The Gap statistic is based on the following idea. The Gap statistic compares the

observed Within Cluster Sum of Squares, WCSS, to the expected Within Cluster

Sum of Squares ,WCSSunif , if we instead had uniformly distributed pixels over the

segment containing the pixel. Then, the Gap statistic for K segments is defined as

follows:

Gap(K) = log WCSS(K)− log WCSSunif (K) (19)

The quantity log WCSSunif (K) is computed by simulation: it is the average log

WCSS(K) over some simulated uniform pixels. Thus, the higher the Gap statistic is,

the better the segmentation result.
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5.4 Evaluating Segmentations of Well Image

In Figure 17, we show segmentation results using our proposed methodology of the

well images for varying number segments, K, and neighborhood radii, r, used in com-

puting the Σshaped(r). The purple, green and red boxes each respectively indicates the

highest CH index, Silhouetteavg and Gap statistic values. In Figure 18, we include

the distributions of the relatively scaled values of the CH index, Silhouette average

and Gap statistic measure for each of the segmentations. The CH index, Silhouette

average, and Gap statistic are each scaled to a range between 0 and 1 so we can

relatively compare the measures.

Figure 17: Shape-based flexible segmentations for Segments from 4 to 7 and Neighboorhood Ra-

dius from 2 to 5; The purple, green and red boxes respectively indicates the highest CH index,

Silhouetteavg and Gap statistic values.

From Figure 17, we can see that each of the different evaluation measures has

selected its “best” segmentation. Note that the “best” segmentation result is dif-

ferent for each evaluation measure. The conclusion across the evaluation measures

is inconsistent. However, looking at Figure 18, the scaled values of the CH index,

the Silhouette average, and the Gap statistic for the segmentation with 5 segments

and neighorhood radius 1 are similarly high and close to 1. The Silhouette average

and Gap statistic both selected the segmentations with 4 number of segments and
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Figure 18: The distributions of the relatively scaled values of CH index, Silhouette Average and

Gap Statistic measure for each corresponding segmentations in Figure 17.

respectively, neighborhood radius of 2 and 5 to be their “best” segmentations; but

looking at Figure 18, these “best values” are just slightly higher than the values in the

segmentation with 5 segments and neighborhood radius 1. By looking at the distri-

bution of the scaled values of the evaluation measures, we can say that the evaluation

measures are in close agreement of the segmentation with 5 segments and radius 1

being the best, and they appear to be just slightly inconsistent.

By inspection, none of the evaluation measure selected the “best” segmentation of

the well image, which is the segmentation with five number of segments and a neigh-

borhood radius of three. Like any other clustering problems, image segmentation runs

into the problem of being able to choose an appropriate number of segments. One

could use cross validation to select the number of segments. Nevertheless, in unsu-

pervised learning problems like image segmentation, evaluating the segmentations it’s

a hard and open problem. Unfortunately, none of our proposed evaluation measure

seems to find the “best” segmentation by inspection.
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6 Experiments

In this section, we experiment with our shape-based flexible NCut algorithm on other

image examples. The segmentations are presented in Figure 19 on the next page.

For all of our example images, by inspection, the shape-based flexible NCut al-

gorithm gives better segmentations compared to their respective original NCut seg-

mentations. For example, for the elephants, the shape-based flexible NCut algorithm

managed to grab the legs of both the elephants as well as the trunk of the elephant at

the left, both of which the original NCut algorithm failed to do. Furthermore, if we

look at the image of the mother bears and cubs, the shape-based improved NCut al-

gorithm managed to capture the front leg of the mother bear, while the original NCut

algorithm did not. Moreover, for the image of the penguin, the shape-based flexible

NCut algorithm succeeds in segmenting out the whole penguin from the background

when the original NCut algorithm only identifies the black fur that heavily contrasts

with the white background from the penguin. In addition, for the image of Professor

Nugent, the shape-based flexible NCut algorithm separates Professor Nugent from

the background while the original NCut algorithm does slightly worse. Finally, if

we look at the face segmentation of Yi Xiang Chong, the flexible shape-based NCut

algorithm segments the entire face, while the original NCut algorithm divides the face.

From the segmentation results in Figure 19, we have successfully managed to

incorporate local variation and flexibility into the NCut algorithm.

7 Robustness

In this section, we will look at the robustness of both the original NCut algorithm and

our proposed shape-based flexible NCut algorithm in the presence of random white

noise. The motivation behind doing this is to look at possibly applying our flexible

shape-based NCut algorithm on old, dirty digitally scanned pictures or images taken

by row resolution cameras.

We test both algorithms on two noisy images of the spiraling well. In the first

well image, we add normal random noise with mean 0 and variance 20, ε1 ∼ N(0, 20),

to all pixels in the image. In the second well image, we add normal random noise

with mean 0 and variance 60, ε2 ∼ N(0, 60), to all pixels. The segmentation results
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(a) Original segmentation (b) Shape-based flexible segmenta-

tion

(c) Shape-based flexible segmenta-

tion (color)

Figure 19: (a)-(c) Original and shape-based flexible NCut segmentations of example images: ele-

phants (Segments = 4, r = 4), a mother bear with cubs (Segments = 5, r = 10), a penguin (Segments

= 4, r = 6), Professor Nugent (Segments = 4, r = 1), and Yi Xiang Chong (Segments = 5, r = 1);

shared parameters: σX = 0.3, R = 10.
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of both these algorithms for these two noisy images are shown in Figure 20 and 21:

(a) Noisy well image 1 (b) Original segmentation (c) Shape-based flexible segmenta-

tion

Figure 20: (a) The spiraling well image with ε1 ∼ N(0, 20) added to all pixels; (b) The original NCut

segmentation of the noisy well image 1; (c) The shape-based flexible segmentation of the noisy well

image 1 with neighorhood radius, r = 3; shared parameters: σX = 0.3, R = 10.

(a) Noisy well image 2 (b) Original segmentation (c) Shape-based flexible segmenta-

tion

Figure 21: (a) The spiraling well image with ε2 ∼ N(0, 60) added to all pixels; (b) The original NCut

segmentation of the noisy well image 2; (c) The shape-based flexible segmentation of the noisy well

image 2 with neighorhood radius, r = 3; shared parameters: σX = 0.3, R = 10.

From Figure 20 and Figure 21 above, we can see that the NCut algorithm itself

(the original and which the shape-based flexible NCut algorithm is based on) is quite

robust towards noisy images in general. In Figures 20(b), 20(c), 21(b), and 20(c), the

NCut algorithm still manages to find segments that correspond to the levels of the

well in both of the noisy images.

For a less noisy image like Figure 20(a), the original NCut algorithm and the

shape-based NCut algorithm both perform well, and gave the same segmentations

as before (compare with Figure 10(a) and 10(b)). For a noisier image like Figure

21(a), the shape-based flexible NCut algorithm seems to perform slightly better than

the original NCut algorithm. In Figure 21(c), the shape-based flexible NCut algo-

rithm seems to give more complete segments of the well levels. In particular, the
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shape-based flexible NCut algorithm gave a complete 2nd level segment of the well

image while in Figure 21(b), the original NCut algorithm gave a partially complete

2nd level segment of the well image. Furthermore, in Figure 21(c), the shape-based

flexible NCut algorithm manages to segment out some of the tiny little rocks in the

middle. When faced with a noisy image, it may be better to have a slightly more lo-

cal segmentation than a global segmentation so that we can obtain more information

about the variation in the noisy image.

In summary, both the original NCut algorithm and the shape-based flexible NCut

algorithm are robust with slightly noisy images. However, the shape-based flexible

NCut algorithm may perform slightly better for noisier images.

8 Future Work and Discussion

Our proposed shape-based flexible NCut algorithm seems to perform moderately bet-

ter and to be potentially more robust than the original NCut Algorithm. However,

we believe there is more work that could be done to further improve the segmenta-

tion results of the NCut Algorithm. So far, we have just redefining the σF tuning

parameter to improve the segmentations. One possible future approach would be to

additionally redefine the spatial tuning parameter, σX . For example, one could make

σX a function of the image features. In this research paper, we have only looked at

black and white images. examining the performance on color or textured images. The

proposed shape-based flexible methodology is still applicable to images with multiple

feature vectors (for example, RGB content).

One might argue that we could use cross validation to select the σF value instead

of calculating individual neighborhood tuning values for each pixel. However, one

challenge of using cross validation to select the tuning parameters is picking an ap-

propriate evaluation measure for “good” segmentations. In unsupervised learning like

image segmentation, evaluating the segmentations is still a hard and open problem.

Our method instead provides an intuitive framework to select the appropriate tuning

parameter σF based on just the variation of the features in the image itself. Further-

more, even if we could use cross validation to choose σF , we would still only have one

constant σF tuning parameter for the whole image instead of locally varying σRegion

parameter values, which allows us to add flexibility to the algorithm.
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One weakness of our proposed method is that the σngbhd(r) values are heavily

dependent on the neighborhood radius, r, parameter. In a way, we come back to the

original problem of trying to choose an appropriate value for an arbitrary parameter;

in this case, the r parameter. Nevertheless, the possible range of choosing r is smaller

than σF since the largest possible neighborhood radius r value it can take is half of

the largest width or height of the image - the radius of the image itself. On the other

hand, σF can take any positive real number. One useful advantage of having the

tuning parameter σngbhd(F (i), r) as a function of a r-sized neighborhood around each

pixel i is that the tuning parameter associated with pixel i within a segmentation

can always ‘stretch’ to reach out to capture the variation of the features from other

regions of the image. This extra flexibility is extremely useful if the segmented object

is part of another region not belonging to its segmentation. For example, for the

penguin image in Figure 18, one can see that the original NCut algorithm failed to

segment the whole penguin but only managed to grab its black fur since the black fur

contrasted strongly with the white background. However, with neighborhood flexibil-

ity, the shape-based flexible NCut allowed the pixels in the original segmented black

fur region to ‘stretch out’ to capture the variation of the white fur of the penguin,

making it a single penguin segment.

In addition, having to compute our Σshaped matrix adds additional computing time

to the NCut algorithm. The original NCut algorithm takes, on average, 30 seconds

to complete segmenting an image of size 160 x 160. With our proposed methodology,

the NCut algorithm takes, on average, 2 minutes to complete segmenting an image,

four times the amount of time taken by the original algorithm. Since we are using

the original NCut segmentations to compute our Σshaped matrix, we are in effect run-

ning the NCut algorithm twice. Furthermore, the computational time increases when

the neighborhood radius r increases. The original NCut algorithm itself becomes

intractable when the image size is large. As shown in the original NCut paper, mini-

mizing the NCut criterion is NP-complete. Approximations to our methodology will

need to be developed.

We have introduced a more flexible approach in constructing the affinity matrix

that may improve the segmentation and robustness of the original NCut Algorithm.

However, there are still possible computational issues with our proposed methodology.
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Future work should address speeding up the Σshaped matrix construction. One could

look at using heuristic methods , which are faster, to come up with approximate

regions in the image for the construction Σshaped. Hopefully, our research will be

helpful to the image segmentation field.
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Code Appendix

==================

1. createTable.m

==================

% createTable: Creates and display segmentation results

%

% createTable outputs a table of the NCut segmentation results

% with Number of Segments on the y-axis and Neighborhood Radius

% on the x-axis according to the specified parameters.

function createTable;

%% Default values of

% nbSegments = 5; (default)

% sampleRadius = 10; (default)

% sampleRate = 0.3; (default)

% edgeVariance = 0.1; (default)

nbSegments = 5;

sampleRadius = 10;

sampleRate = 0.3;

edgeVariance = 0.1;

dataW.sampleRadius = sampleRadius;

dataW.sample_rate = sampleRate;

dataW.edgeVariance = edgeVariance;

sigmamatParam.YES = 1; % 1 = yes sigmamat; 0 = no sigmamat

sigmamatParam.CANNY = 0; % 1 = yes sigmamat with Canny; 0 = no sigmamat with Canny

sigmamatParam.RADIUS = 1; % neighborhood radius when computing sigmamat

%% Creating plots with "Number of Segments" vs "Sigmamat Radius"

% Image File

imgFile = ’spiral.jpg’;

numSegs = [4 7]; sigmamatRad = [2 5];

[CHtest, Stest, Gtest, segObj_array, colObj_array] = ...

createResults(numSegs, sigmamatRad, dataW, sigmamatParam, imgFile);
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% Setting variables

nrow = numSegs(2)-numSegs(1)+1;

ncol = sigmamatRad(2)-sigmamatRad(1)+1;

% Find the index with the Silhouette measure closest to 1

Stemp = zeros(nrow, ncol);

for i = 1:nrow

for j = 1:ncol

nsize = size(Stest{i,j},2);

temp = zeros(1,nsize);

for k = 1:nsize

temp(k) = mean(Stest{i,j}{k});

end

Stemp(i,j) = mean(temp);

end

end

Stemp2 = Stemp+1; Stemp2 = Stemp2’;

Sindex = find(Stemp2==max(Stemp2(:)));

% Find the index with the greatest CH measure

CHtest2 = CHtest ./ max(CHtest)’;

CHindex = find(CHtest2==max(CHtest2(:)));

% Find the index with the greatest G measure

Gtest2 = Gtest ./ max(Gtest)’;

Gindex = find(Gtest2==max(Gtest2(:)));

% Plot the colored segmentation graphs

counter = 1;

for i = 1:nrow

for j = 1:ncol

subplot(nrow,ncol,counter);

imagesc(colObj_array{i,j}); axis off;

counter = counter + 1;

end

end

% Full screen segmentations

h = gcf;

% Maximize(h);
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% Locate the figure(s) with the best CH measures

% CH index -> ’purple box’

hf = subplot(nrow, ncol, CHindex);

hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, [0.5,0,0.5], ’LineWidth’, 5.0);

% Locate the figure(s) with the best G measure

% G index -> ’purple box’

hf = subplot(nrow, ncol, Gindex);

hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, ’Red’, ’LineWidth’, 5.0);

% Silhouette index -> ’green box’

hs = subplot(nrow, ncol, Sindex);

hs = get(hs, ’Position’);

annotation(’rectangle’, hs, ’EdgeColor’, ’g’, ’LineWidth’, 5.0);

% Plot the segmentation graphs

counter = 1;

figure;

for i = 1:nrow

for j = 1:ncol

subplot(nrow,ncol,counter);

imagesc(segObj_array{i,j}); axis off;

counter = counter + 1;

end

end

% Full screen segmentations

h = gcf;

% Maximize(h);

% Locate the figure(s) with the best CH and Silhouette measures

% CH index -> ’purple box’

hf = subplot(nrow, ncol, CHindex);

hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, [0.5,0,0.5], ’LineWidth’, 5.0);

% Locate the figure(s) with the best G measure

% G index -> ’purple box’

hf = subplot(nrow, ncol, Gindex);
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hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, ’Red’, ’LineWidth’, 5.0);

% Silhouette index -> ’green box’

hs = subplot(nrow, ncol, Sindex);

hs = get(hs, ’Position’);

annotation(’rectangle’, hs, ’EdgeColor’, ’g’, ’LineWidth’, 5.0);

%% Distribution plots of the evaluation measures

counter = 1;

figure;

for i = 1:nrow

for j = 1:ncol

subplot(nrow,ncol,counter);

v = [CHtest2(i,j) Stemp2(i,j) Gtest2(i,j)]’;

bh = bar(v, ’EdgeColor’, [1 1 1]);

set(gca, ’XTickLabel’, {’CH Index’, ’Silhouette Avg + 1’, ’Gap Statistic’});

ch = get(bh,’children’);

cd = [0.5 0 0.5; 0 1 0; 1 0 0];

set(ch,’facevertexcdata’,cd);

counter = counter + 1;

end

end

% Locate the figure(s) with the best CH and Silhouette measures

% CH index -> ’purple box’

hf = subplot(nrow, ncol, CHindex);

hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, [0.5,0,0.5], ’LineWidth’, 5.0);

% Locate the figure(s) with the best G measure

% G index -> ’purple box’

hf = subplot(nrow, ncol, Gindex);

hf = get(hf, ’Position’);

annotation(’rectangle’, hf, ’EdgeColor’, ’Red’, ’LineWidth’, 5.0);

% Silhouette index -> ’green box’

hs = subplot(nrow, ncol, Sindex);

hs = get(hs, ’Position’);

annotation(’rectangle’, hs, ’EdgeColor’, ’g’, ’LineWidth’, 5.0);

end
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==================

2. createResults.m

==================

% createResukts: Creates the CH indices, Silhouette Averages, Gap

% statistics and the NCut segmentation display objects

%

% createEesults outputs a matrix of CH indices, Silhoette Average,

% and Gap statistic for each NCut segmentation with different Number

% of Segments and Neighborhood Radius. Furthermore, this function

% returns two matrices of NCut segmentation display objects, with

% lines and colored, for each Number of Segment and Neighborhood Radius.

function [testStatMat_CH, testStatMat_S, testStatMat_G, segObj_array, colObj_array] ...

= createResults(numSegs,sigmamatRad,dataW,sigmamatParam,imgFile)

% nrow - Number of Semgents

% ncol - Neighborhood Radiuss

nrow = numSegs(2)-numSegs(1)+1;

ncol = sigmamatRad(2)-sigmamatRad(1)+1;

% Matrices for each evaluation measure

testStatMat_CH = zeros(nrow,ncol);

testStatMat_S = cell(nrow,ncol);

testStatMat_G = zeros(nrow,ncol);

% Matrices of NCUt display objects

segObj_array = cell(nrow,ncol);

colObj_array = cell(nrow,ncol);

for i = 1:nrow

nbSegments = numSegs(1)+i-1;

%% Shape Tuning Method (supervised)

cd(’C:\Documents and Settings\Yi Xiang Chong\My Documents\MATLAB Workspace\

NcutImage_Original\NcutImage_7\’);

main;

SegLabel_prior = demoNcutImage(nbSegments, imgFile);

cd(’C:\Documents and Settings\Yi Xiang Chong\My Documents\MATLAB Workspace\

NcutImage_7_1\NcutImage_7\’);

main;
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for j = 1:ncol

sigmamatParam.RADIUS = sigmamatRad(1)+j-1;

% Run the NCut Algorithm

[segObj, colObj, CH, S, G] = runNcutImage(nbSegments, dataW, sigmamatParam,

SegLabel_prior, imgFile);

% Building the Test Stat Matrix

testStatMat_CH(i,j) = CH;

testStatMat_G(i,j) = G;

testStatMat_S{i,j} = S;

% Collecting the display objects

segObj_array{i,j} = segObj;

colObj_array{i,j} = colObj;

end

end

end

====================

3. runNcutImage.m

====================

%%

% runNCutImage: Runs the NCut algorithm to create segmentation display

% objects and the evaluation measures

%

% Run demoNcut Image without displaying figure or user interaction

% Run demoNuct by varying these following parameters:

% nbSegments - number of Segments

% sampleRadius - sampling Radius

% sampleRate - sampling Rate

% edgeVariance - constant locality variance

% SegLabel_prior - regions from original NCut segmentation

% imgFile = image file name

% Output image objects and evaluation measures

%%

function [segObj, colObj, CH, S, G] = runNcutImage(nbSegments, dataW, sigmamatParam,

SegLabel_prior, imgFile);

45



main;

%% read image, change color image to brightness image, resize to 160x160

I = imread_ncut([’specific_NcutImage_files/jpg_images/’ imgFile],160,160);

% Add random noise if necessary for robustness test

% I = I + normrnd(0,20,size(I));

%% compute the edges imageEdges, the similarity matrix W based on

%% Intervening Contours, the Ncut eigenvectors and discrete segmentation

disp(’computing Ncut eigenvectors ...’);

tic;

[SegLabel,NcutDiscrete,NcutEigenvectors,NcutEigenvalues,W,imageEdges] = ...

NcutImage(I,nbSegments,dataW,sigmamatParam,SegLabel_prior);

disp([’The computation took ’ num2str(toc) ’ seconds on the ’ num2str(size(I,1)) ’x’

num2str(size(I,2)) ’ image’]);

%% save the segmentation display objects

bw = edge(SegLabel,0.01);

J1=showmask(I,imdilate(bw,ones(2,2)));

J2=showmask(SegLabel,imdilate(bw,ones(2,2)));

segObj = J1;

colObj = J2(:,:,1);

disp(’This is the segmentation’);

%% Compute the evaluation measures

% Declaring the necessary variables and arrays

CLUSTER = cell(1,nbSegments);

CLUSTER_unif = cell(1,nbSegments);

WCSS = zeros(1,nbSegments);

WCSS_unif = zeros(1,nbSegments);

BCSS = zeros(1,nbSegments);

SCALE = max(I(:));

I_new = I ./ SCALE;

I_unif = I(randperm(size(I,1)), randperm(size(I,2)));

elements = unique(SegLabel);

for i=1:nbSegments
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CLUSTER{i} = I_new(SegLabel==elements(i));

CLUSTER_unif{i} = I_unif(SegLabel==elements(i));

end

% Within cluster sum of squares (WCSS) for each cluster

for i = 1:nbSegments

temp = CLUSTER{i};

temp2 = CLUSTER_unif{i};

% var normalizes V by N 1

WCSS(i) = var(temp(:))*(length(temp(:))-1);

WCSS_unif(i) = var(temp2(:))*(length(temp2(:))-1);

end

% Between clusters sum of squares (BCSS) for each cluster

for i = 1:nbSegments

grand_avg = mean(I_new(:));

temp = CLUSTER{i};

clust_avg = mean(temp(:));

BCSS(i) = length(CLUSTER{i}) * (clust_avg - grand_avg)^2;

end

%% Compute the CH index, CH

WCSS_tot = sum(WCSS);

WCSS_tot_unif = sum(WCSS_unif);

BCSS_tot = sum(BCSS);

CH = (BCSS_tot/(nbSegments-1)) / (WCSS_tot/(length(I(:))-nbSegments));

%% Compute the Gap Statistic, G

G = log(WCSS_tot) - log(WCSS_tot_unif);

%% Compute the test statistic S, "Silhouette Coefficient"

% Declaring the necessary variables and arrays

TESTSTAT_S = cell(1,nbSegments);

Svalues = silhouette(I_new(:),SegLabel(:),’sqeuclid’);

for i=1:nbSegments

TESTSTAT_S{1,i} = Svalues(SegLabel(:)==elements(i));
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end

S = TESTSTAT_S;

disp(’The demo is finished.’);

end

==================

4. NcutImage.m

==================

% [SegLabel,NcutDiscrete,NcutEigenvectors,NcutEigenvalues,W,imageEdges]=

NcutImage(I);

% Input: I = brightness image

% nbSegments = number of segmentation desired

% Output: SegLable = label map of the segmented image

% NcutDiscrete = Discretized Ncut vectors

%

% Timothee Cour, Stella Yu, Jianbo Shi, 2004.

function [SegLabel,NcutDiscrete,NcutEigenvectors,NcutEigenvalues,W,imageEdges]=

NcutImage(I,nbSegments,dataW,sigmamatParam,SegLabel_prior)

if nargin <2,

nbSegments = 10;

end

% Return W = matrix of edges weight (similarity matrix)

% imageEdges = image showing edges extracted

[W,imageEdges] = ICgraph(I,sigmamatParam,nbSegments,SegLabel_prior,dataW);

[NcutDiscrete,NcutEigenvectors,NcutEigenvalues] = ncutW(W,nbSegments);

%% generate segmentation label map

[nr,nc,nb] = size(I);

SegLabel = zeros(nr,nc);

for j=1:size(NcutDiscrete,2),

SegLabel = SegLabel + j*reshape(NcutDiscrete(:,j),nr,nc);

end
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==================

5. ICGraph.m

==================

% [W,imageEdges] = ICgraph(I,dataW,dataEdgemap);

% Input:

% I = gray-level image

% optional parameters:

% dataW.sampleRadius=10;

% dataW.sample_rate=0.3;

% dataW.edgeVariance = 0.1;

%

% dataEdgemap.parametres=[4,3, 21,3];%[number of filter orientations, number of scales, filter size, elongation]

% dataEdgemap.threshold=0.02;

%

% Output:

% W: npixels x npixels similarity matrix based on Intervening Contours

% imageEdges: image showing edges extracted in the image

%

% Timothee Cour, Stella Yu, Jianbo Shi, 2004.

function [W,imageEdges] =

ICgraph(I,sigmamatParam,nbSegments,SegLabel_prior,dataW,dataEdgemap);

[p,q] = size(I);

if (nargin< 5) | isempty(dataW),

dataW.sampleRadius=10; % default was 10

dataW.sample_rate=0.3; % default was 0.3

dataW.edgeVariance = 0.1; % default was 0.1

% 0.05 good segmentation for face images.

end

if (nargin<6) | isempty(dataEdgemap),

dataEdgemap.parametres=[4,3, 21,3];%[number of filter orientations, number of scales,

filter size, elongation]

dataEdgemap.threshold=0.02;

end

edgemap =

computeEdges(I,dataEdgemap.parametres,dataEdgemap.threshold,sigmamatParam,nbSegments,SegLabel_prior);
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imageEdges = edgemap.imageEdges;

W =

computeW(I,dataW,edgemap.emag,edgemap.sigmamat,edgemap.ephase,sigmamatParam);

=======================

6. computeEdges.m

=======================

% edgemap = computeEdges(imageX,parametres,threshold)

%

% computes the edge in imageX with parameters parametres and threshold

% Timothee Cour, Stella Yu, Jianbo Shi, 2004.

function edgemap =

computeEdges(imageX,parametres,threshold,sigmamatParam,nbSegments,SegLabel_prior)

[ex,ey,egx,egy,eg_par,eg_th,emag,ephase , g ] =

quadedgep(imageX,parametres,threshold);

% example : [ex,ey,egx,egy,eg_par,eg_th,emag,ephase] = quadedgep(imageX,

[4,3,30,3],0.05);

% function [x,y,gx,gy,par,threshold,mag,mage,g,FIe,FIo,mago] =

quadedgep(I,par,threshold);

% Input:

% I = image

% par = vector for 4 parameters

% [number of filter orientations, number of scales, filter size, elongation]

% To use default values, put 0.

% threshold = threshold on edge strength

% Output:

% [x,y,gx,gy] = locations and gradients of an ordered list of edgels

% x,y could be horizontal or vertical or 45 between pixel sites

% but it is guaranteed that there [floor(y) + (floor(x)-1)*nr]

% is ordered and unique. In other words, each edgel has a unique pixel id.

% par = actual par used

% threshold = actual threshold used

% mag = edge magnitude

% mage = phase map

% g = gradient map at each pixel

% [FIe,FIo] = odd and even filter outputs

% mago = odd filter output of optimum orientation

%

% Stella X. Yu, 2001
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% [emagTrie,eindex] = sort(emag);

%edges3 = sparse(floor(ex),floor(ey),

(egx.^2+egy.^2).^(1/2),size(imageX,2),size(imageX,1))’;

%% To compute sigma_ij matrix (Added Yi Xiang 11/10/2011)

if (sigmamatParam.YES==1)

[row,col] = size(emag);

varmat = zeros(row,col);

rad = sigmamatParam.RADIUS;

for i=1:row

for j=1:col

% temp = ngbhdpoints(i,j,emag,rad);

% varmat(i,j) = var(temp(:)); % using pearson variance

% varmat(i,j) = distanceCov(temp(:),temp(:)); % using distance variance

varmat(i,j) = decaying_ngbhd_var(i,j,emag,rad); % using decaying variance

end

end

sigmamat = sqrt(varmat);

% HeatMap(flipud(sigmamat));

%% Canny Enhanced Method

% temp = edge(imageX,’canny’);

% sigmamat_CANNY = sigmamat;

%% Shape Tuning Method

sigmamat_CLUSTERS = cell(1,nbSegments);

elements = unique(SegLabel_prior);

for i=1:nbSegments

sigmamat_CLUSTERS{i} = sigmamat(SegLabel_prior==elements(i));

end

% Taking the mode

sigmamat_new = sigmamat;
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for i = 1:nbSegments

sigmamat_new(SegLabel_prior==elements(i)) = mode(sigmamat_CLUSTERS{i});

end

%% Box Bounding Method

% A = SegLabel_prior==elements(i);

% [rB, rT, cL, cR, B] = truncateMatrix(A);

% if(rB~=0)

% if(cL==0) A(rB,1:cR) = A(rB,1:cR) | 1;

% elseif (cR==0) A(rB,cL:size(A,2)) = A(rB,cL:size(A,2)) | 1;

% else A(rB,cL:cR) = A(rB,cL:cR) | 1;

% end

% end

%

% if(rT~=0)

% if(cL==0) A(rT,1:cR) = A(rT,1:cR) | 1;

% elseif (cR==0) A(rT,cL:size(A,2)) = A(rT,cL:size(A,2)) | 1;

% else A(rT,cL:cR) = A(rT,cL:cR) | 1;

% end

% end

%

% if(cL~=0)

% if(rT==0) A(1:rB,cL) = A(1:rB,cL) | 1;

% elseif (rB==0) A(rT:size(A,1),cL) = A(rT:size(A,1),cL) | 1;

% else A(rT:rB,cL) = A(rT:rB,cL) | 1;

% end

% end

%

% if(cR~=0)

% if(rT==0) A(1:rB,cR) = A(1:rB,cR) | 1;

% elseif (rB==0) A(rT:size(A,1),cR) = A(rT:size(A,1),cR) | 1;

% else A(rT:rB,cR) = A(rT:rB,cR) | 1;

% end

% end

% sigmamat_CLUSTERS{i} = sigmamat(A);

%% Exponential Decay Method

% for i = 1:nbSegments

% %% New method

% A = sigmamat .* (SegLabel_prior==elements(i));

% A = truncateMatrix(A);

% [rowA, colA] = size(A);
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%

% if (mod(A,2)==0) % if even

% A = [A(1:rowA/2, 1:colA/2) NaN(rowA/2,1) A(1:rowA/2, colA/2+1:colA);

% NaN(1,colA+1);

% A(rowA/2+1:rowA, 1:colA/2) NaN(rowA/2,1) A(rowA/2+1:rowA,

colA/2+1:colA)];

% center_r = rowA/2+1;

% center_c = colA/2+1;

%

% sigmamat_new(SegLabel_prior==elements(i)) = ...

% (decaying_ngbhd_var(center_r,center_c,A,rowA/2));

%

% else % if odd

% center_r = floor(rowA/2)+1;

% center_c = floor(colA/2)+1;

%

% sigmamat_new(SegLabel_prior==elements(i)) = ...

% (decaying_ngbhd_var(center_r,center_c,A,rowA/2));

%

% end

% end

% HeatMap(sigmamat_new)

% sigmamat_new(find(temp)) = sigmamat(find(temp));

sigmamat = sigmamat_new;

% sigmamat = sigmamat_CANNY;

end

%%

try

temp = edge(imageX,’canny’);

edges2 = emag .* temp ;

if (sigmamatParam.CANNY == 1)

sigmamat = sigmamat .* temp;

% HeatMap(flipud(sigmamat));

end

%edges2 = emag .* edge(imageX,’sobel’) ;

catch

edges2 = 0 * emag;

end
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edges2 = edges2 .* (edges2 > threshold);

egx1 = g(:,:,1);

egy1 = g(:,:,2);

eindex = find(edges2);

[ey,ex,values] = find(edges2);

egx = egx1(eindex);

egy = egy1(eindex);

%% Include sigmamat in edgemap (Added by Yi Xiang 11/10/2011)

if (sigmamatParam.YES==1)

edgemap.sigmamat = sigmamat;

else

edgemap.sigmamat = NaN;

end

edgemap.eindex = eindex;

edgemap.values = values;

edgemap.x = ex;

edgemap.y = ey;

edgemap.gx = egx;

edgemap.gy = egy;

edgemap.emag = emag;

edgemap.ephase = ephase;

edgemap.imageEdges = edges2;

=================

7. computeW.m

=================

% W = computeW(imageX,dataW,emag,ephase)

% Timothee Cour, Stella Yu, Jianbo Shi, 2004.

% * function [i,j] = cimgnbmap([nr,nc], nb_r, sample_rate)

% * computes the neighbourhood index matrix of an image,

% * with each neighbourhood sampled.

% * Input:

% * [nr,nc] = image size

% * nb_r = neighbourhood radius, could be [r_i,r_j] for i,j

% * sample_rate = sampling rate, default = 1

% * Output:

% * [i,j] = each is a column vector, give indices of neighbour pairs

% * UINT32 type
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% * i is of total length of valid elements, 0 for first row

% * j is of length nr * nc + 1

function W = computeW(imageX,dataW,emag,sigmamat,ephase,sigmamatParam)

[p,q] = size(imageX);

[w_i,w_j] = cimgnbmap([p,q],dataW.sampleRadius,dataW.sample_rate);

%% Added by Yi Xiang Chong

if (sigmamatParam.YES == 1)

%% Look at the affinity matrix structure of W before normalizing by sigmamat

% W = affinityic(emag,ephase,w_i,w_j,max(emag(:)) * dataW.edgeVariance);

% spy(W) % Note: Takes up a lot of processing time

%% There are 3 methods (for now) of normalizing the affinity matrix

%% Method 1: Normalizing intensity matrix first before

%% computing affinity matrix

% emag = emag .* (sigmamat);

% W_after_1 = affinityic(emag,ephase,w_i,w_j,max(emag(:)) * dataW.edgeVariance);

%% Method 2: Normalizing affinity matrix with "sigma(i) * sigma(j)"

%% (default method in paper)

W_after_2 = affinityic_2(emag,ephase,w_i,w_j,sigmamat);

%% Method 3: Normalizing affinity matrix with "sigma(i) + sigma(j)"

W_after_3 = affinityic_3(emag,ephase,w_i,w_j,sigmamat);

%% Pick the appropriate method

% W = W_after_1; % Method 1

W = W_after_2; % Method 2

% W = W_after_3; % Method 3

else

W = affinityic_ori(emag,ephase,w_i,w_j,max(emag(:)) * dataW.edgeVariance);
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end

W = W/max(W(:));

=================

8. affinityic.c

=================

/*================================================================

* function w = affinityic(emag,ephase,pi,pj,sigma)

* Input:

* emag = edge strength at each pixel

* ephase = edge phase at each pixel

* [pi,pj] = index pair representation for MALTAB sparse matrices

* sigma = sigma for IC energy

* Output:

* w = affinity with IC at [pi,pj]

*

% test sequence

f = synimg(10);

[i,j] = cimgnbmap(size(f),2);

[ex,ey,egx,egy] = quadedgep(f);

a = affinityic(ex,ey,egx,egy,i,j)

show_dist_w(f,a);

* Stella X. Yu, Nov 19, 2001.

*=================================================================*/

# include "mex.h"

# include "math.h"

void mexFunction(

int nargout,

mxArray *out[],

int nargin,

const mxArray *in[]

)

{

/* declare variables */

int nr, nc, np, total;
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int i, j, k, ix, iy, jx, jy, ii, jj, iip1, jjp1, iip2, jjp2, step;

double sigma, di, dj, a, z, maxori, phase1, phase2, slope;

int *ir, *jc;

unsigned long *pi, *pj;

double *emag, *ephase, *w;

/* check argument */

if (nargin<4) {

mexErrMsgTxt("Four input arguments required");

}

if (nargout>1) {

mexErrMsgTxt("Too many output arguments");

}

/* get edgel information */

nr = mxGetM(in[0]);

nc = mxGetN(in[0]);

if ( nr*nc ==0 || nr != mxGetM(in[1]) || nc != mxGetN(in[1]) ) {

mexErrMsgTxt("Edge magnitude and phase shall be of the same image size");

}

emag = mxGetPr(in[0]);

ephase = mxGetPr(in[1]);

np = nr * nc;

/* get new index pair */

if (!mxIsUint32(in[2]) | !mxIsUint32(in[3])) {

mexErrMsgTxt("Index pair shall be of type UINT32");

}

if (mxGetM(in[3]) * mxGetN(in[3]) != np + 1) {

mexErrMsgTxt("Wrong index representation");

}

pi = mxGetData(in[2]);

pj = mxGetData(in[3]);

/* create output */

out[0] = mxCreateSparse(np,np,pj[np],mxREAL);

if (out[0]==NULL) {

mexErrMsgTxt("Not enough memory for the output matrix");

}

w = mxGetPr(out[0]);

ir = mxGetIr(out[0]);

jc = mxGetJc(out[0]);
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/* find my sigma */

if (nargin<5) {

sigma = 0;

for (k=0; k<np; k++) {

if (emag[k]>sigma) { sigma = emag[k]; }

}

sigma = sigma / 6;

printf("sigma = %6.5f",sigma);

} else {

sigma = mxGetScalar(in[4]);

}

//a = 0.5 / (sigma * sigma);

/* computation */

total = 0;

for (j=0; j<np; j++) {

jc[j] = total;

jx = j / nr; /* col */

jy = j % nr; /* row */

for (k=pj[j]; k<pj[j+1]; k++) {

i = pi[k];

if (i==j) {

maxori = 1;

} else {

ix = i / nr;

iy = i % nr;

/* scan */

di = (double) (iy - jy);

dj = (double) (ix - jx);

maxori = 0.;

phase1 = ephase[j];
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/* sample in i direction */

if (abs(di) >= abs(dj)) {

slope = dj / di;

step = (iy>=jy) ? 1 : -1;

iip1 = jy;

jjp1 = jx;

for (ii=0;ii<abs(di);ii++){

iip2 = iip1 + step;

jjp2 = (int)(0.5 + slope*(iip2-jy) + jx);

phase2 = ephase[iip2+jjp2*nr];

if (phase1 != phase2) {

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

}

}

iip1 = iip2;

jjp1 = jjp2;

phase1 = phase2;

}

/* sample in j direction */

} else {

slope = di / dj;

step = (ix>=jx) ? 1: -1;

jjp1 = jx;

iip1 = jy;

for (jj=0;jj<abs(dj);jj++){

jjp2 = jjp1 + step;

iip2 = (int)(0.5+ slope*(jjp2-jx) + jy);

phase2 = ephase[iip2+jjp2*nr];
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if (phase1 != phase2){

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

}

}

iip1 = iip2;

jjp1 = jjp2;

phase1 = phase2;

}

}

//maxori = 0.5 * maxori;

maxori = maxori;

maxori = exp(-maxori * maxori);

//maxori = exp(-maxori * maxori * a);

}

ir[total] = i;

w[total] = maxori;

total = total + 1;

} /* i */

} /* j */

jc[np] = total;

}

=================

9. affinityic_2.c

=================

/*================================================================

* Modified to accomodate for ’sigma(i) * sigma(j)* method

*

* function w = affinityic_2(emag,ephase,pi,pj,sigmamat)

* Input:

* emag = edge strength at each pixel

* ephase = edge phase at each pixel

* [pi,pj] = index pair representation for MALTAB sparse matrices
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* sigma = sigma for IC energy

* Output:

* w = affinity with IC at [pi,pj]

*

% test sequence

f = synimg(10);

[i,j] = cimgnbmap(size(f),2);

[ex,ey,egx,egy] = quadedgep(f);

a = affinityic(ex,ey,egx,egy,i,j)

show_dist_w(f,a);

* Stella X. Yu, Nov 19, 2001.

*=================================================================*/

# include "mex.h"

# include "math.h"

void mexFunction(

int nargout,

mxArray *out[],

int nargin,

const mxArray *in[]

)

{

/* declare variables */

int nr, nc, np, total;

int i, j, k, ix, iy, jx, jy, ii, jj, iip1, jjp1, iip2, jjp2, step;

double sigma, di, dj, a, z, s, maxori, sMaxori, phase1, phase2, slope;

int *ir, *jc;

unsigned long *pi, *pj;

double *emag, *ephase, *w, *sigmamat;

/* check argument */

if (nargin<4) {

mexErrMsgTxt("Four input arguments required");

}

if (nargout>1) {

mexErrMsgTxt("Too many output arguments");

}

/* get edgel information */

61



nr = mxGetM(in[0]);

nc = mxGetN(in[0]);

if ( nr*nc ==0 || nr != mxGetM(in[1]) || nc != mxGetN(in[1]) ) {

mexErrMsgTxt("Edge magnitude and phase shall be of the same image size");

}

emag = mxGetPr(in[0]);

ephase = mxGetPr(in[1]);

np = nr * nc;

/* get new index pair */

if (!mxIsUint32(in[2]) | !mxIsUint32(in[3])) {

mexErrMsgTxt("Index pair shall be of type UINT32");

}

if (mxGetM(in[3]) * mxGetN(in[3]) != np + 1) {

mexErrMsgTxt("Wrong index representation");

}

pi = mxGetData(in[2]);

pj = mxGetData(in[3]);

/* create output */

out[0] = mxCreateSparse(np,np,pj[np],mxREAL);

if (out[0]==NULL) {

mexErrMsgTxt("Not enough memory for the output matrix");

}

w = mxGetPr(out[0]);

ir = mxGetIr(out[0]);

jc = mxGetJc(out[0]);

/* find my sigma */

if (nargin<5) {

sigma = 0;

for (k=0; k<np; k++) {

if (emag[k]>sigma) { sigma = emag[k]; }

}

sigma = sigma / 6;

printf("sigma = %6.5f",sigma);

} else {

sigmamat = mxGetPr(in[4]);

}

//a = 0.5 / (sigma * sigma);

/* computation */
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total = 0;

for (j=0; j<np; j++) {

jc[j] = total;

jx = j / nr; /* col */

jy = j % nr; /* row */

for (k=pj[j]; k<pj[j+1]; k++) {

i = pi[k];

if (i==j) {

sMaxori = 1;

} else {

ix = i / nr;

iy = i % nr;

/* scan */

di = (double) (iy - jy);

dj = (double) (ix - jx);

sMaxori = 0.;

maxori = 0.;

phase1 = ephase[j];

/* sample in i direction */

if (abs(di) >= abs(dj)) {

slope = dj / di;

step = (iy>=jy) ? 1 : -1;

iip1 = jy;

jjp1 = jx;

for (ii=0;ii<abs(di);ii++){

iip2 = iip1 + step;

jjp2 = (int)(0.5 + slope*(iip2-jy) + jx);

phase2 = ephase[iip2+jjp2*nr];
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if (phase1 != phase2) {

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

s = (sigmamat[iip1+jjp1*nr] * sigmamat[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

sMaxori = s;

}

}

iip1 = iip2;

jjp1 = jjp2;

phase1 = phase2;

}

/* sample in j direction */

} else {

slope = di / dj;

step = (ix>=jx) ? 1: -1;

jjp1 = jx;

iip1 = jy;

for (jj=0;jj<abs(dj);jj++){

jjp2 = jjp1 + step;

iip2 = (int)(0.5+ slope*(jjp2-jx) + jy);

phase2 = ephase[iip2+jjp2*nr];

if (phase1 != phase2){

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

s = (sigmamat[iip1+jjp1*nr] * sigmamat[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

sMaxori = s;

}

}

iip1 = iip2;

jjp1 = jjp2;
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phase1 = phase2;

}

}

//maxori = 0.5 * maxori;

maxori = maxori;

sMaxori = exp(-maxori * maxori * sMaxori);

//maxori = exp(-maxori * maxori * a);

}

ir[total] = i;

w[total] = sMaxori;

total = total + 1;

} /* i */

} /* j */

jc[np] = total;

}

====================

10. affinityic_3.c

====================

/*================================================================

* Modified to accomodate for ’sigma(i) + sigma(j)’ method

*

* function w = affinityic_2(emag,ephase,pi,pj,sigmamat)

* Input:

* emag = edge strength at each pixel

* ephase = edge phase at each pixel

* [pi,pj] = index pair representation for MALTAB sparse matrices

* sigma = sigma for IC energy

* Output:

* w = affinity with IC at [pi,pj]

*

% test sequence

f = synimg(10);

[i,j] = cimgnbmap(size(f),2);

[ex,ey,egx,egy] = quadedgep(f);

a = affinityic(ex,ey,egx,egy,i,j)
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show_dist_w(f,a);

* Stella X. Yu, Nov 19, 2001.

*=================================================================*/

# include "mex.h"

# include "math.h"

void mexFunction(

int nargout,

mxArray *out[],

int nargin,

const mxArray *in[]

)

{

/* declare variables */

int nr, nc, np, total;

int i, j, k, ix, iy, jx, jy, ii, jj, iip1, jjp1, iip2, jjp2, step;

double sigma, di, dj, a, z, s, maxori, sMaxori, phase1, phase2, slope;

int *ir, *jc;

unsigned long *pi, *pj;

double *emag, *ephase, *w, *sigmamat;

/* check argument */

if (nargin<4) {

mexErrMsgTxt("Four input arguments required");

}

if (nargout>1) {

mexErrMsgTxt("Too many output arguments");

}

/* get edgel information */

nr = mxGetM(in[0]);

nc = mxGetN(in[0]);

if ( nr*nc ==0 || nr != mxGetM(in[1]) || nc != mxGetN(in[1]) ) {

mexErrMsgTxt("Edge magnitude and phase shall be of the same image size");

}

emag = mxGetPr(in[0]);

ephase = mxGetPr(in[1]);

np = nr * nc;

/* get new index pair */
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if (!mxIsUint32(in[2]) | !mxIsUint32(in[3])) {

mexErrMsgTxt("Index pair shall be of type UINT32");

}

if (mxGetM(in[3]) * mxGetN(in[3]) != np + 1) {

mexErrMsgTxt("Wrong index representation");

}

pi = mxGetData(in[2]);

pj = mxGetData(in[3]);

/* create output */

out[0] = mxCreateSparse(np,np,pj[np],mxREAL);

if (out[0]==NULL) {

mexErrMsgTxt("Not enough memory for the output matrix");

}

w = mxGetPr(out[0]);

ir = mxGetIr(out[0]);

jc = mxGetJc(out[0]);

/* find my sigma */

if (nargin<5) {

sigma = 0;

for (k=0; k<np; k++) {

if (emag[k]>sigma) { sigma = emag[k]; }

}

sigma = sigma / 6;

printf("sigma = %6.5f",sigma);

} else {

sigmamat = mxGetPr(in[4]);

}

//a = 0.5 / (sigma * sigma);

/* computation */

total = 0;

for (j=0; j<np; j++) {

jc[j] = total;

jx = j / nr; /* col */

jy = j % nr; /* row */

for (k=pj[j]; k<pj[j+1]; k++) {

i = pi[k];

67



if (i==j) {

sMaxori = 1;

} else {

ix = i / nr;

iy = i % nr;

/* scan */

di = (double) (iy - jy);

dj = (double) (ix - jx);

sMaxori = 0.;

maxori = 0.;

phase1 = ephase[j];

/* sample in i direction */

if (abs(di) >= abs(dj)) {

slope = dj / di;

step = (iy>=jy) ? 1 : -1;

iip1 = jy;

jjp1 = jx;

for (ii=0;ii<abs(di);ii++){

iip2 = iip1 + step;

jjp2 = (int)(0.5 + slope*(iip2-jy) + jx);

phase2 = ephase[iip2+jjp2*nr];

if (phase1 != phase2) {

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

s = (sigmamat[iip1+jjp1*nr] + sigmamat[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

sMaxori = s;

}

}
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iip1 = iip2;

jjp1 = jjp2;

phase1 = phase2;

}

/* sample in j direction */

} else {

slope = di / dj;

step = (ix>=jx) ? 1: -1;

jjp1 = jx;

iip1 = jy;

for (jj=0;jj<abs(dj);jj++){

jjp2 = jjp1 + step;

iip2 = (int)(0.5+ slope*(jjp2-jx) + jy);

phase2 = ephase[iip2+jjp2*nr];

if (phase1 != phase2){

z = (emag[iip1+jjp1*nr] + emag[iip2+jjp2*nr]);

s = (sigmamat[iip1+jjp1*nr] + sigmamat[iip2+jjp2*nr]);

if (z > maxori){

maxori = z;

sMaxori = s;

}

}

iip1 = iip2;

jjp1 = jjp2;

phase1 = phase2;

}

}

//maxori = 0.5 * maxori;

maxori = maxori;

sMaxori = exp(-maxori * maxori * sMaxori);

//maxori = exp(-maxori * maxori * a);

}

ir[total] = i;
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w[total] = sMaxori;

total = total + 1;

} /* i */

} /* j */

jc[np] = total;

}

========================

11. decaying_ngbhd_var.m

========================

% decaying_ngbhd_var: Compute the exponentially weighted variance

% for a given neighborhoods

%

% This function is written to compute an "exponential weight" variance for

% for a given neighborhood of points with a particular radius

%

% nbghd radius = radius (default is 1)

%

% Only works for square matrix nxn, where n > 3

% (Added Yi Xiang 11/10/2011

%

function [decay_var] = decaying_ngbhd_var(r,c,A,grandRad)

% Normalizing constant (so weights add up to 1)

denominator = sum(exp(-(1:grandRad)));

n_groups = grandRad;

n_total = sum(~isnan(A(:)));

var_temp = 0;

grand_Mean = nanmean(A(:));

for i = 1:grandRad

ring_i = outermost_ngbhd_ring(r,c,A,i);

ring_i(isnan(ring_i)) = [];

group_i = length(ring_i(:));

weight_i = group_i/(n_total-1) * (exp(-i)/denominator);

var_temp = var_temp + weight_i * sum((ring_i - grand_Mean).^2);

end

decay_var = var_temp;

end
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=======================

12. ngbhdpoints.m

=======================

% ngbhdpoints: Extracts the neighborhood points from

% a reference point given a specific radius

%

% This function is written to extract a submatrix of neighborhood points

% from a larger matrix A, given the reference point (r,c)

%

% nbghd radius = radius (default is 1)

%

% Only works for square matrix nxn, where n > 3

% (Added Yi Xiang 11/10/2011

%

function [ngbhdpoints] = ngbhdpoints(r,c,A,radius)

[row,col] = size(A);

% Up(U); Down(D); Left(L); Right(R) of circle radius

% The 16 different combinations

% Within bounds:

% U D L R

if ((r-radius)>=1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)<=col)

B = A(r-radius:r+radius, c-radius:c+radius); % neighborhood

% Up(U) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)<=col)

B = A(1:r+radius, c-radius:c+radius);

% Down(D) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)>=1 && (c+radius)<=col)

B = A(r-radius:row, c-radius:c+radius);

% Left(L) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)<1 && (c+radius)<=col)

B = A(r-radius:r+radius, 1:c+radius);

% Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)>col)

B = A(r-radius:r+radius, c-radius:col);

% Up(U) and Down(D) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)>=1 && (c+radius)<=col)

B = A(1:row, c-radius:c+radius);
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% Left(L) and Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)<1 && (c+radius)>col)

B = A(r-radius:r+radius, 1:col);

% Up(U) and Left(L) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)<1 && (c+radius)<=col)

B = A(1:r+radius, 1:c+radius);

% Up(U) and Right(R) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)>col)

B = A(1:r+radius, c-radius:col);

% Down(D) and Left(L) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)<1 && (c+radius)<=col)

B = A(r-radius:row, 1:c+radius);

% Down(D) and Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)>=1 && (c+radius)>col)

B = A(r-radius:row, c-radius:col);

% Up(U) and Down(D) and Left(L) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)<1 && (c+radius)<=col)

B = A(1:row, 1:c+radius);

% Up(U) and Down(D) and Right(R) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)>=1 && (c+radius)>col)

B = A(1:row, c-radius:col);

% Left(L) and Right(R) and Down(D) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)<1 && (c+radius)>col)

B = A(r-radius:row, 1:col);

% Left(L) and Right(R) and Up(U) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)<1 && (c+radius)>col)

B = A(1:r+radius, 1:col);

% All: Up(U) and Down(D) and Left(L) and Right(R) out of bounds,

% just grab the whole matrix

else

B = A;

end

ngbhdpoints = B;

end
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==============================

13. outermost_ngbhd_ring.m

==============================

% outermost_ngbhd_ring: Extract the outermost ring of points

% from a reference point given a radius

%

% This function returns a vector of the outermost ring of points

% from a larger matrix A, given the reference point (r,c)

%

% nbghd radius = radius (default is 1)

%

% Only works for square matrix nxn, where n > 3

% (Added Yi Xiang 11/10/2011

%

function [ring] = outermost_ngbhd_ring(r,c,A,radius)

[row,col] = size(A);

% Up(U); Down(D); Left(L); Right(R) of circle radius

% The 16 different combinations

% If radius == 1

if (radius == 1)

B = ngbhdpoints(r,c,A,radius);

end

% Within bounds:

% U D L R

if ((r-radius)>=1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)<=col)

B = [A(r-radius, c-radius:c+radius) A(r+radius, c-radius:c+radius) ...

A(r-radius:r+radius, c-radius)’ A(r-radius:r+radius, c+radius)’];

B = unique(B);

% Up(U) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)<=col)

B = [A(r+radius, c-radius:c+radius) ...

A(1:r+radius, c-radius)’ A(1:r+radius, c+radius)’];

B = unique(B);

% Down(D) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)>=1 && (c+radius)<=col)

B = [A(r-radius, c-radius:c+radius) ...

A(r-radius:row, c-radius)’ A(r-radius:row, c+radius)’];

B = unique(B);

% Left(L) radius out of bounds
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elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)<1 && (c+radius)<=col)

B = [A(r-radius, 1:c+radius) A(r+radius, 1:c+radius) ...

A(r-radius:r+radius, c+radius)’];

B = unique(B);

% Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)>col)

B = [A(r-radius, c-radius:col) A(r+radius, c-radius:col) ...

A(r-radius:r+radius, c-radius)’ ];

B = unique(B);

% Up(U) and Down(D) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)>=1 && (c+radius)<=col)

B = [A(1:row, c-radius)’ A(1:row, c+radius)’];

B = unique(B);

% Left(L) and Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)<=row && (c-radius)<1 && (c+radius)>col)

B = [A(r-radius, 1:col) A(r+radius, 1:col)];

B = unique(B);

% Up(U) and Left(L) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)<1 && (c+radius)<=col)

B = [A(r+radius, 1:c+radius) A(1:r+radius, c+radius)’];

B = unique(B);

% Up(U) and Right(R) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)>=1 && (c+radius)>col)

B = [A(r+radius, c-radius:col) A(1:r+radius, c-radius)’];

B = unique(B);

% Down(D) and Left(L) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)<1 && (c+radius)<=col)

B = [A(r-radius, 1:c+radius) A(r-radius:row, c+radius)’];

B = unique(B);

% Down(D) and Right(R) radius out of bounds

elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)>=1 && (c+radius)>col)

B = [A(r-radius, c-radius:col) A(r-radius:row, c-radius)’];

B = unique(B);

% Up(U) and Down(D) and Left(L) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)<1 && (c+radius)<=col)

B = A(1:row, c+radius)’;

% Up(U) and Down(D) and Right(R) radius out of bounds

elseif ((r-radius)<1 && (r+radius)>row && (c-radius)>=1 && (c+radius)>col)

B = A(1:row, c-radius)’ ;

% Left(L) and Right(R) and Down(D) radius out of bounds
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elseif ((r-radius)>=1 && (r+radius)>row && (c-radius)<1 && (c+radius)>col)

B = A(r-radius, 1:col);

% Left(L) and Right(R) and Up(U) radius out of bounds

elseif ((r-radius)<1 && (r+radius)<=row && (c-radius)<1 && (c+radius)>col)

B = A(r+radius, 1:col);

% All: Up(U) and Down(D) and Left(L) and Right(R) out of bounds,

% just grab the edges of the whole matrix

else

B = [A(1, 1:col) A(row, 1:col) A(1:row, 1)’ A(1:row, col)’];

B = unique(B);

end

ring = B;

end

=======================

14. truncateMatrix.m

=======================

% truncateMatrix: Returns the smallest square matrix with least number

% of zeros given a sparse matrix filled with zeros

%

% This function obtains the smallest submatrix with least number of

% zeros given a sparse matrix A

function [rBOTTOM, rTOP, cLEFT, cRIGHT, subMatrix] = truncateMatrix(A)

[row,col] = size(A);

borderCheck = 0; % check if it’s border of submatrix

rBOTTOM = 0;

rTOP = 0;

cLEFT = 0;

cRIGHT = 0;

% For example

% 0 0 0 0

% 1 2 0 3

% 0 0 0 0

%

% So borderCheck = 1 (TRUE) when first row of

% zeros are removed.
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% Remove rows of zeros from TOP

i = 1;

while (borderCheck == 0)

if (sum(A(i,:))==0)

A(i,:) = [];

rTOP = i;

i = i + 1;

row = row - 1;

else

borderCheck = 1;

end

end

% Remove rows of zeros from BOTTOM

borderCheck = 0;

i = row;

while (borderCheck == 0)

if (sum(A(i,:))==0)

A(i,:) = [];

rBOTTOM = i;

i = i - 1;

row = row - 1;

else

borderCheck = 1;

end

end

% Remove cols of zeros from LEFT

borderCheck = 0;

i = 1;

while (borderCheck == 0)

if (sum(A(:,i))==0)

A(:,i) = [];

cLEFT = i;

i = i + 1;

col = col - 1;

else

borderCheck = 1;

end

end
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% Remove cols of zeros from RIGHT

borderCheck = 0;

i = col;

while (borderCheck == 0)

if (sum(A(:,col))==0)

A(:,i) = [];

cRIGHT = i;

i = i - 1;

col = col - 1;

else

borderCheck = 1;

end

end

subMatrix = A;

end
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