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Abstract
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by Manojit Nandi

In this thesis, I will introduce two methodological tools for understanding the
evolution of social networks. Using a mathematical representation of social networks
based on covariance matrices, I demonstrate machine learning algorithms can use these
representations of networks to properly classify networks based on their evolution mech-
anism with high accuracy. I also show the over-expression of particular network motifs

can be used to distinguish between different network evolution processes.
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Introduction

The dynamic evolution of networks -how links form and dissolve in networks
over time- is one of the earliest problems studied in network science. Sociologists and
anthropologists study the formation and evolution of social networks because it provides
an understanding of how societies form along with providing an explantion for observed
phenomena in emperical social networks. In their famous experiment, Milgram and
Travers showed the average distance between any two individuals in a social network is
about 6 people, leading to the development of the idea that human society experiences
a small-world network [1]. Granovetter showed network structures with a prevalence for
weak ties reinforce the diffusion of new information throughout the network as acquain-
tances are less likely to be exposed to the same information as those within a person’s
close circle of friends [2]. More recently, Kuhn et. al showed the structure of scientific
research citation networks provides a framework for understanding the transmission of
scientific memes, information and key phrases that are learned through imitation [3].
Pentland argues how a deeper understanding of the relationship between network evo-
lution and the spread of ideas could be used to develop high-information communites

designed to optimize the potential for economic and scientific innovation [4].

The earlist models in this field assumed a fixed number of nodes in the network
and provide probablistic interpretations of how edges form. The Erdos-Renyi model is
one of the first probablistic models of network growth. In this model, they assume a
fixed number of nodes in the network, and with some probability p, an edge is included
between each pair of nodes, so the formation of each edge is independent of the formation
of other edges [5]. While this model’s simplicity allows for the derivation of certain
mathematical properties, this model does not accurately portray the growth of real-
word networks because the formation of edges in real-world social networks are not

independent of one another.
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The Watts-Strogatz model was developed to address the criticism of the Erdos-
Renyi model. Given a fixed number of nodes N, a mean degree value K, and some
probability value p, the Watts-Strogatz model starts with each node connected to K
other nodes. For each edge, the model removes it with probability p and adds another
edge in the graph, a process known as re-wiring. This model produces networks with
properties found in real-world networks, such as hubs of high local clustering, but these

models often have an unrealistic distribution of node degrees [6].

The Barabasi-Albert model is the first evolving model of network formation
incorporating the preferential attachment property. Preferential attachment is the pos-
itive feedback cycle observed in real-world networks in which nodes with high degree
values are more likely to form edges with new nodes in the network, a phenomena com-
monly referred to the rich-club effect. The Barabasi-Albert model generates networks
where the degree distribution follows a power law distribution of the form Pr[Degree =

k] = k=7 for some constant «y [7].

While there has been work in modeling the evolution of a particular network,
there has not been much development in methodology to compare the evolution of dif-
ferent networks. For example, if we consider Network A and Network B, there is no
statistical test we can run to determine if the processes governing the evolution of Net-
work A differ significantly from the processes governing the evolution of Network B. In
this thesis, we explore two different methodologies to distingush between different net-
work evolution mechanisms. We develop two network evolution mechanisms based on
the idea of latent homophily and social leveraging, a concept we derive from the idea of
social contagions, and we demonstrate that different network motifs are over-expressed
in networks produced by the two mechanisms. In addition, using a mathematical rep-
resentation of social networks based on Krylov Subspaces, we show this representation
can be used as features in a.s'upport vector machine to classify networks based on their

 growth mechanism.
Related Work

More recent work in modeling network evolution includes adding a fitness
function on top of the Barabasi-Albert model, so nodes present during the creation and
early stages of the network evolution are more likely to dominate the network growth
process in later stages [7]. To study the evolution of real-world networks, Fleury et. al
created static snapshots of the network at different times, recorded various properties,
such as clustering coefficent, number of nodes, length of shortest, of each network, and

performed a time series analysis to find patterns in the growth of these properties[8].
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Other similar work involves modeling the evolution of communities, or sub-graphs of
the network that are strongly connected, using a percolation algorithm to forecast the

community’s future growth based on its past growth [9].

However, these methodolgies consider only local properties of the social net-
work and ignore the rest of the network. Methodologies using the entire graph rather
than localized properties are relatively new. Felizi et al [10] use spectral delconvolution
to identify direct edges in a directed network where information spread follows under
closure of transitivity. Choi designs a statistical test to test for coordination in social
network using the entirity of the network where the null hypothesis, lack of coordination,

corresponds to latent homophily [11] .

We studied network evolution from a joint approach. The mathematical rep-
resentation of networks using the Krylov Subspaces captures the spread of information
in the entire network, so we can observe how information diffusion pathways change on
a global scale. To complement this, the network motifs also us to identify key localized
patterns that are indicative of a particular network evolution mechanism. Together, this
joint approach allows us to consider how networks evolve on a global scale and how they

evolve on a local scale.

Network Motifs

Network Motifs are localized sub-graphs within a social netork that re-occur
at a rate that is significantly higher than what we would expect by random chance.
The threshold rate for significance is determined by standard hypothesis testing for
some given o value. Current network science research shows motifs reflect functional
processes that occur in complex networks [12]. Recently, Conway showed network motifs
can be used to model and understand the evolution mechanisms driving the growth of
political networks[13]. From this work, we wish to show that social networks in which
social leveraging is the primary underlying mechanism drivihg the growth of the network
display different network motifs from those networks in which latent homophily is the

primary mechanism driving network growth.

We considered only three-node motifs because all higher-order motifs can be
expressed as combinations of three-node substructures. Many metrics in social network

analysis consider only triples of nodes. For example, the clustering coefficient of a
3 x NumTrianges

NumTriples
number of closed triangles, or sets of nodes A, B, C that form a three-clique [14]. Network

network is calculated as Clustering = , where NumTriangles is the

motifs are indexed in the mfinder Network Motif dictionary [15], and all three-node
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motifs are presented below. The number above each motif represents its index number

in the Motif dictionary.
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F1cURE 1: All 3-node network motifs

Shalizi and Thomas [16] showed that social contagion and latent homophily are
confounded in observational social network data. We used these ideas of social contagion
and latent homophily to design two network evolution mechanisms which govern network

growth by similar processes.

Social Leveraging Motifs

Tn social network literature, social contagions are defined as ideas, beliefs, or
behaviors spread throughout a network in a manner similar to the spread of diseases
[17]. Like diseases, the propagation of social contagion occurs through contact between
individuals in the network. Individuals are said to influence the behaviors of those
they interact with. From this notion of social contagion, we define social leveraging as
the process by which a node uses its current neighbors to grow more neighbors in a
particular direction. A real world example of this would be professional networking in
which a person asks his colleagues to introduce him to a very important person in the
network. This way, the persoﬁ uses his current.connections to build future connections.
If person A has the potential to inﬁueﬁce person B, and person B has the botential to
influence person C, then_person A can leverage his connection with person B to create

an opportunity to influence person C, and thereby form a link to person C. Because of

this, we expect to observe triadic closure - the increased likelihood of individuals to form

links if they share common nelghbors— denoted by the presence of closed triangles in the
network. In social leveraging, because potential pathways to influence are unidirectional,
the closure of any trible of nodes in the network favors unidirectional links. In the
example abdvé, because there is a pathway for persoﬁ A to potentially influence person
C, but no pathway for person C to influence person A, then the formation of a directed
edge from person A to person C' is more likely than a directed edge from person C to

person A.
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Latent Homophily Motifs

Latent homophily is the increased likelihood that individuals with similar
behaviors are more likely to form links in a network. Whereas social contagions im-
plies observed links between individuals result in changes in behavior, latent homophily
implies behavior results in changes in observed links between individuals. Latent ho-
mophily implies the formation of new edges between person A and person C can be
attributed to their likelihood to attend similar events or have similar friends, so they
have more opportunities to meet one another. For example, if Alice and Bob are both
interested in animal rights, then they are likely to meet one another at an animal rights
rally. After connecting with one another, Alice and Bob are likely to discuss and share
the latest news about animal rights and related topics. If Alice is friends with Elsa, and
Bob is friends with Elsa, and all three are interested in animal rights, then Elsa serves
as a conduit for the exchange of ideas between Alice and Bob. Elsa and Alice could
have a discussion about animal rights, and afterwards, Elsa tells Bob about some of the
things she and Alice discussed. As a result, Bob is indirectly influenced by Alice’s ideas.
Conversely, Elsa could tell Alice about some of the things she and Bob discussed, so Al-
ice is indirectly influenced by Bob. Therefore, Alice has the potential to influence Bob
through Elsa, and Bob has the potential to influence Alice through Elsa in a symmetric

manner.

In general, if person A has a connection to person B, and person B has a
connection with person C, then we expect A and B to be similar and B and C' to be
similar. By transitivity, we expect A and C to be similar with a probability that is sig-
nificantly higher than random chance. Therefore like social contagion, latent homophily
works under the mechanism of triadic closure, so there is an increased likelihood of tri-
angles in the network. Unlike social contagions, the directionality of the link formation
is symmetric, so we are as equally likely to observe a link from Person A to Person C as

we are to observe a link from Person C to Person A.

Network Simulations

I developed two algorithms that simulate the latent homophily process and the
social leveraging process on an input Barabasi-Albert network. For these simulations, a
directed edge from node A to node B means node A possesses the potential to influence
node B. In an empirical setting, the potential to influence could be represented by
various proxies, such as friendship, communication, or other social constructs. Potential

to influence is an asymmetric relationship, and proxy to study potential to influence
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can be adapted based on the attributes of the empirical network. In the homophily
simulation, the likelihood of A influencing B should be the same as the likelihood of
B influencing A, so the direction of edge formation between any two pairs of nodes is
symmetric. On the other hand, in the social leveraging simulation, the likelihood of
forming an edge from node A to node B is proportional to the number of directed paths
from the former to the latter, so the direction of edge formation is asymmetric between

any pair of nodes.

Latent Homophily Simulation

The latent homophily simulation algorithm looks for pairs of nodes that are
not already neighbors and calculates the number of friends they have in common. The
algorithm then divides this value by the geometric mean of the number of neighbors
for each node to define a proper probability value. The sociological intuition for this
mechaniém is that the more friends node A and B have in common, the more opportunity
for them to interact. However, this interaction is less significant if each node has a
large number of neighbors because then any interaction between the two nodes is less
meaningfﬁi, corresponding to passing each other by at large party as opposed to talking
to each other during a small gathering of friends. Latent homophily implies individuals
forms edges hecause they are similar, and similarity is a symmetric relation, this method
is symmetric in both directions, so the probability of adding an edge from B to A is the

same as adding an edge from A to B.

Our latent homophily simulation algorithm differs from other latent homophily
simulation algorithm in that we do not pre-specify the number of communities in the net-
work, nor does our algorithm attempt to construct latent homophily relationships from
the pre-determined communities [19]. Therefore, this homophily simulation algorithm

* is & contribution of this thesis.

We provide the algorithm and an example of a homophily network produced by this

simulation below.
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Algorithm 1 Latent Homophily Simulation
Input: InputNetwork, Numlterations
for i = 0 to Numlterations do
for NodeA in InputNetwork.Nodes() do
Neighborsa = A.getNeighbors()
for NodeB in InputNetwork.Nodes() do
if A# B and B ¢ Neighborsa then
> % Find the common neighbors of the two nodes
CommonNeighbors = Neighborsa N Neighborsp
len(Common Neighbors)
/len(Neighbors 4) * len(Neighborsp)
> % Adds an edge from Node A to Node B with probability GeometricMean
InputNetwork.addEdge(A,B, probability = GeometricMean)
end if
end for
end for
end for
return InputNetwork

GeometricMean =
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FIGURE 2: A 100-node network produced by the homophily simulation
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Social Leveraging Simulation

The social leveraging simulation algorithm looks for pairs of nodes that are
not already neighbors and calculates the number of paths from A to B and defines the
probability of adding an edge from A to B as the number of paths divided by the total
number of paths in the network to normalize the probabilities. A sociological intutition
for this approach if person A has many pathways to potentially influence person C, then
he has more opp_ortﬁnies to leverage his current connections, so as to form an edge with

person C.

Because computing all the paths from A to B becomes inefficient as the net-
work grows in size, the total number of paths from A to B were approximated by powers
of the adjacency matrix. Formally, we took the adjacency matrix M and iteratively cal-
culated the powers of this matrix up to M %, where % is the floored ratio of edges to
nodes in the network. By calculating powers of the matrix, we estimated the number
of paths of length v from node A to node B and vice versa. This calculation is not
symmetric because if there are more paths from A to B compared to the number of
paths from B to 4, then the probability of forming an edge from A to B is higher than
the probability of forming an edge from B to A. There is no algorithm in the literature
that simulates the effects of social leveraging, so this simulation algorithm is an unique

contribution of this thesis.

Algorithm 2 Social Leveraging Simulation
Input: InputNetwork € R™*™ Numlterations
for i = 0 to Numlterations do - :

Initialize M € R™"™ to the zero matrix.
if InmputNetwork;; # 0 and i # j then
M;; = Number of paths from ¢ to j.
end if ;
M

= T B v v oy & This normalizes the matrix M
Pick an entry (4, j) of M proportional to its value, and add an edge between i and

7 in the InputNetwork.

end for

return InputNetwork

‘We provide an social leverage network produced by this algorithm below:
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FIGURE 3: A 100-node network produced by the social leveraging simulation

Mathematical Representation of Social Networks

Graph Theoretic Representation

For the last two hundred years, networks have been represented by a square
adjacency matrix A € R™*" where a;; denotes information about the connection between
node 7 and node j. In an unweighted network, a;; € {0,1} where a;; = 1 if node ¢ and
node j are connected, and a;; = 0 otherwise. In a undirected network, the adjacency
matrix A is symmetric. The graph-theory based representation reflects the connections
between the nodes in the network, but it may not accurately capture the diffusion of
information throughtout the network. For a given adjacency matrix representation,
different models of information diffusion may be equally valid, and there is no further

method to validate the correctness of these models.
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Covariance Matrix Representation

For this thesis, we will use a different mathematical representation of networks
developed by Shrivastava and Li [20]. Given an adjacency matrix A, the vector of ones
&, and some postive integer k, this representation uses the Krylov subspace projection
of A on & up to order k, which is {A4é, A%, --- , Aké}.

In a unweighted adjacency matrix, only immediate neighbors are represented.
To calculate paths from non-neighboring pairs of nodes in the network, we compute
powers of the adjacency matrix. For some positive integer m, A™ denotes the adjacency
matrix A raised to the m®® power, and for this matrix, A7} is the number of paths from
node I to node J of length m.

Algorithm 3 Covariance Matrix Representation

Input: A € R™*"™: Adjacency Matrix, k: Number of power iterations
¥ =é e X!
Initialize Matrix M ¢ R¥*n
fort=1tok do

A t—1 3
My =nx m > Bach column of M, 4 is an n x 1 vector
z* = Mgy,
end for
L= = R.’cxl
n
C4= %E(M(i),(:) =) (M), — w)* : > M) isak x 1 vector

return C4 € RFxF

Using the provided algorithm, we generate a symrhétric k %k Covariance
Matrix represention of the network. Because Aé is an n vector where the j%* element
is the number of outgoing edges for node 7, the 7% column of the matrix M reflect the
proportion of outgoing paths starting from node 7, and the i" row of M reflects the
total number of paths of length 7.

As a result, the matrix returned by this ajgorithln, C4, is a covariance matrix
of M, reflecting the number of outgoing paths up to length k. For our model, we assume
the edges in the network represent influence, so the outgoing paths represent diffusion of
'iﬁ_ﬂuence in our mé.del,' Thé covaria.nce matrix C'# is also a symmetric positive-definite,
meaﬁing all of the eigenvé]ues of this matrix are positive. Previously, we were unable to
define a ﬁoti_on of distance between networks of differing sizes, but with this covariance
matrix representation, we can compare the resulting covariance matrix, C*4 and CF for

networks A and B respectively, directly.

To demonstrate how this algorithm works, let’s examine the following Barabasi-

Albert network, denoted as Network A. If we run it through the covariance represen-
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FIGURE 4: Network A: 100-node Barabasi-Albert network

tation algorithm with k& = 5, we get back the following 5 covariance matrix, denoted

by C4. As stated above, we see the covariance matrix is symmetric and performing an
¥

eigendecompositon yields all positive eigenvalues.

0.865
0.632
A
C* = 10816
0.699
0.812

0.632
0.707
0.761
0.785
0.798

0.817
0.761
0.960
0.886
0.998

0.699
0.785
0.887
0.910
0.944

0.812
0.798
0.998 (1)
0.944
1.054

Now, let’s consider the following network generated by running the homophily

mechanism on Barabasi-Albert network A, and denoted this network as Network B.

Running it through the covariance representation algorithm with & = 5 yields the co-

variance matrix C'B.
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FIGURE 5: Network B: 100-node Latent Homophily network

2259 2.272 2.319 2.339 2.352

2.272 2473 2.541 2.575 - 2.502 e

CB=|2319 2541 2645 2.683 2.705 (2)
2.330 2.575 2.683 2.727 2.751
2.352 2.502 2.705 2.750 2.774

From visual inspection, we see that in network B, the nodes are more densely
connected in smaller component. As a result, the amount of information that can diffuse
in this component is greater than that of the diffusion in network A. Therefore, we
observe the values of C are greater than their corresponding values in C4. This provides
initial belief that this representation may be useful for classifying network generated by
different mechanisfn. In addition, we see that values of k as small as 1 may be able to

distinguish between the different network types.
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Classification of Social Networks using Support Vector Machines

To perform classification on the social networks, we constructed the adjacency
matrix for each network and transformed it into the covariance matrix representation up
to some order k. We fattened this matrix into a k2-dimensional vector, so it can be used
a training example for a support vector machine. Each flattened matrix is associated
with a label: 0 if the network is Barbarasi- Albert network, 1 if the network was produced
by the latent homophily mechanism, and 2 if the network was produced by the social

leveraging mechanism.

For classification testing, we chose to use Support Vector Machines, a machine
learning algorithm used for binary classification that derives a hyperplane to maximize
the margin between clusters of labeled data. Formally, this algorithm finds the hyper-

plane with the following properties:

fm) = wlzi+b=1, ify=1 @)
wlz;+b=—1, ify;=-1

where x;,y; are the features and the label of i*? training datapoint that has the smallest
||w|| value, corresponding to the largest margin. Intuitively, for binary classification, this
means if the training point has a positive label, it falls on one side of the hyperplane.
If the training point has a negative label, it falls on the other side of the hyperplane.
Furthermore, the hyperplane with the largest margin means the magnitude of separation
between positive and negative datapoints is maximized, so no points fall within this

margin, and we are more confident about our labels.

However, this formulation of Support Vector Machines works only when the
data is linearly separable. Therefore, we used a soft-margin Support Vector Machine
to classify the data points. Unlike the previous formulation, the soft-maring Support

Vector Machine allows slack for the data points to fall within the margin.

1o -
min w’w + C;Ei (4)
subject to the constraints
£>0 (5)
(w-zi+by—(1-&)=20 (6)

where €' is a cost penalty parameter that allows us to control how much

importance we place on data points falling within the margin or misclassifications, and
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&; is the amount of slack we allow for datapoint z; to satisfy the (w-z;+b)y; —(1-§&) > 0
constraint. The minimization of w”w allows the classifier to learn the hyperplane with
the largest margin, so the overall optimization problem becomes a trade-off between
learning the hyperplane with the largest margin and learning the hyperplane with the

least amount of slack.

To generalize this binary classification task to multiple classes, we found the

: hyperplane corresponding to each label and aggregated these hyperplanes to classify

the data. The Support Vector Machine use a symmetric, positive semi-definite kernel

function to define a notion of distance between the datapoints. In addition, a cost

- penalty C is used to penalize the Support Vector Machine if data points fall within the
- margin [21].

Because support vector machines can perform only binafy classiﬁcation, the
experiment phase is done in one vs. other testing; ie. Latent Homophily Network vs
Not Latent Homophily Network, Social Leveraging Network vs Not Social Leveraging
Network. :

Because these networks are generated entirely by a single process, we wanted
to see how our classifier performed when the networks are a mixture of latent homophily
-and social leverage. We did not develop a network simulation algorithm that simulates
mixtures of latent homophily and social leveraging, so we created these mixed networks
by taking convex combinations of our pure networks. The resulting mixed network was
then assigned the label of the pure network with the highest coefficient in the convex

combination.

Results

To test our methodology, we simulated 600 social leverage networks, 600 ho-
mophily networks, and constructed a synthetic dataset consisting of these 1800 networks
(600 social leverage, 600 latent homophily, and 600 base Barbarasi-Albert graphs). We
partitioned this synthetic dataset to generate a training and testing dataset. These

simulated networks ranged in size from 1000 nodes to 2000 nodes.

Support Vector Machine Classification

The Support Vector Machine was created with a linear kernel, meaning the
notion of distance between two datapoints is defined by their inner product in Euclidean

Space, and cost penalty C' = 1. This soft-margin classifier finds hyperplane that best
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separates the training data but allows for misclassification. The classifier achieved 98%
accuracy on the test dataset for both the Latent Homophily Network vs Not Homophily
and the Social Leveraging network vs Not Social Leveraging network classification task.
We applied Stratified 2-Fold Cross Validation, a statistical methodology to partition the
dataset into training and testing subsets such that the data is evenly represented between
the two groups, to generate the training and testing dataset, so the high accuracy cannot
be attributed to bad representation of the labels in the testing phase [22]. Because a
linear kernel yielded 98 % accuracy, this suggests there may be a mathematical difference
in the covariance matrices produced by these two processes: Latent Homophily and

Social Leveraging.

1.00 Prediction Accuracy with Krylov Order
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FIGURE 6: The accuracy of the classifier as the level of convexity changed

We tested our classifier on convex combinations of our homophily networks
and our social leverage networks. For a given & € (0,1), 400 convex combinations were
created by randomly sampling with replacement 400 social leverage networks and 400
latent homophily networks. For a sampled latent homophily network L and a social
leveraging network S, a convex combination C was generated by C' := 85 + (1 — 6)L.
In addition, the label of the convex network C' was defined by label(C) := £ label(S) +
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(1 —8) label(L). We did not consider Barabasi-Albert networks in the convex combina-
tions. The homophily networks and the social leverage networks were generated from
Barbarasi-Albert networks, so a convex combination would represent a network where
the Ea_tént homophily process or the social leverage process was less prominent. Fur-
thermore, including Barabasi—Albert networks would introduce this problem of convex

combinations of unordered labels, rendering classification using the labels impossible.

We see a noticable drop in the classifier accuracy as the convexity level ap-

proached € = 0.5. For different Krylov suBspace projections of length k, the figure
“above shows the trade-off between the accuracy of the classifier and the convexity of
the combination (the value of ). Krylov subspace projections above length 5 were not
computed due to lack of memory issues on our hardware. We observe a tandem increase
in the classifier accuracy and thé'order of the Krylov subspace, suggesting that as the co-
variance matrix provides more infﬁrmation about longer paths of diffusion, the network
classification problem becomes easier for the support vector machine. If the clusters
are separated, then this decrease in accuracy can be explained because the convex com-
bination pulls the two clusters together, so the two clusters overlap more as # — 0.5,

therefore making it harder for the classifier to distinguish between the two clusters.

We observe that as the value of k increases, the classifier can discriminate be-
tween different networks with higher accuracy. However, the effect on classifier accuracy
by increasing k& above 4 diminishes according to our results. This suggests that having
more information about the pathways of influence diffusion yields a more accurate de-
cision boundary. To test whether this new mathematical representation is better than
the standard adjacency matrix, we tested the Support Vector machine trained on the
covariance matrix representation vs Support Vector machines trained on the adjacency
matrix representation. Because adjacency matrices are not comparable when they differ
in size, both classifiers were trained on networks consisting of 1000 nodes and networks

~ consisting of 1500 nodes. The results are summarized below.”

Table 1 Classifier performance using different network representations

Covariance Matrix (K = 5) Adjacency Matrix

1000 nodes Networks (Convexity = 0.00) 0.983 : 0.331
1000 nodes Networks (Convexity = 0.55) 0.668 0.014
1500 nodes Networks (Convexity = 0.00) 0.977 0.283
1500 nodes Networks (Convexity = 0.55) 0.651 0.000
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Network Motifs

To identify the motifs in the networks, we used the FANMOD application .
In a manner similar to a Permutation Test, the algorithm enumerates all possible sub-
graphs, and then randomly adds and removes edges while simultaneously preserving
bidirectional edges to calculate p-values to detect of motifs of size m,[23]. Using the
FANMOD network motif detection software, we identified six network motifs that are

over-represented in the homophily networks. The six motifs are presented below: All of

PANYA NV A VANV AN

Ficure 7: The six motifs discovered in latent homophily networks

these motifs are closed motifs, so this is consistent with out hypothesis that the latent

homophily mechanism increases the representation of closed 3-node motifs.

We found three motifs that are over-represented in the social leveraging net-

works. These three motifs are motif 38, motif 46, and motif 166.

We found none of the three-node motif types to be over-expressed in the
Barnabasi-Albert networks. We tested at the « = 0.01 significance level, using the
Bonferroni Correction to account for multiple hypothesis testing. We provide the re-

sults for 1000 node networks below.
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Table 2 The frequency.ancl p-value of each of the six network motifs in 1000-node
Leverage networks

Motif ID  Leverage Freq Leverage P-value BA network Freq BA network P-value

Motif 6  34.13% 1 11.498% 0.166
Motif 12 24.533% 1 20.475% 0.119
Motif 14 1.9987% 1 20.755% 0.776
Motif 36 34.490% ;S 12.751% 0.199
Motif 38 2.1885% I 0.078816% 0.872
Motif 46  0.1265% 0 0.035029% 0.27
Motif 78  0.050601% 1 10.649% 0.981
Motif 102  0.042167% 0.025 0.052544% 0.339
Motif 140 0.016867% 0.0945 0.017515% 0.763
Motif 164  2.3023% 1 23.601% 0.726
Motif 166  0.18132% 0 0.035029% 0.352
Motif 174  0.016867% 0 0.035029% 0.785

0 0.017515% 0-;

Motif 238 0.0042167%

Table 3 The frequency and p-value of each of the six network motifs in 1000-node
homophily networks - o

Motif ID  Homophily Freq Homophily P-value BA network Freq BA network P-value

Motif 6 22.082% 1 10.306% 0.526
Motif 12 42.742% 1 19.815% 0.002
Motif 14 4.7679% 1 23.654% 0.412
Motif 36 18.481% 1 9.4377% 0.484
Motif 38 4.8163% 0 0.079643% 0.744
Motif 46 0.443565% 0 0.023893% 0.605
Motif 78 0.28559% 1 13.42% 0.914
Motif 102 0.5615% 0 - 0.023893% 0941
Motif 140  0.79868% 0 0.0% 1
Motif 164  4.4871% 1 23.168% 0.433
Motif 166  0.37756% 0 0.023893% 0.592
Motif 174 0.15974% 0 0.039822% 0.861
Motif 238 0.0048405% 0 0.0079643% 0.004

We found motif 12 to be statisically significant in only two of the Barabasi-
Albert networks, so we believe these over-representations may be due to random fuc-

tuations. In addition, we found motif 238 to be statistically significant in half of the
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Barabasi- Albert networks, but because the overall frequency of this particular motif is

low, so this result can be attributed to random fluctuations.

The motifs 38, 46, and 166 are statistically significant in all of our social
leveraging networks, but we also found motifs 178, 238, and 78 to bhe significant in some
of the leveraging networks. Motifs 78, 178, and 238 are closely related in that adding
one edge to motif 78 produces motif 178 and adding two edges to motif 78 produces
motif 238. These motifs occur at such a low frequency, so these results can be explained

by random fluctuations.

Motifs 38, 46, and 166 are closed motifs that do not induce a cycle in the
sub-graph, that is to say it is impossible to explore all three nodes in the motif following
the directions of the arrows. On the other hand, motifs 102, 140 and 174 do induce a
cycle in the sub-graph. From this result, we may distinguish latent homophily networks
from social leverage networks by the presence of closed, cyclical three-node motifs. The
latent homophily mechanism favors all closed three-node motifs, but the social leveraging
mechansim is more restrictive by favoring only acyclical closed three-node motifs. The
presence of closed triangles is an indicator of latent homophily, so this result shows both

mechanisms operate according to triadic closure.

Conclusion

We examined two different approaches to studying the evolution of network
structures under different mechansisms. The first approach uses network motifs as an
observable local feature of the network to identify whether a network evolved according
to latent homophily or social leveraging. We found only acyclic closed three-node motifs
are over-expressed in the social leverage networks whereas all closed three-node motifs
are over-expressed in the latent homophily networks. The over-expression of close motifs
show both mechanisms operate under triadic closure, One possible avenue for future
work involves designing statistical tests that use the over-expression of network motifs
to determine if the evolution of two social networks occurs due to different processes

acting on the networks.

In the second approach, we used a new mathematical representation of so-
cial networks based on the Krylov Subspace projection of the adjacency matrices to
represent the network as a covariance matrix. For some integer k, networks of differ-
ent sizes can all be represented as a & x k covariance matrix. The covariance matrix
representation allows us to compare networks of different sizes metrically. When these

covariance matrices are used as features for a Support Vector Machine classifier, these
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classifiers achieve near-perfect accuracy on the classification test. The classifier shows
robustness in its accuracy when convex combinations of networks are introduced into the
dataset. Support Vector Machines trained using covariance matrices as features greatly
outperform Support Vector Machines trained using adjacency matrices as features. We
have shown the co{rariance matrix representation provides more insig’ht comiaared to the

adjacency matrix in distinguishing between different network evolution processes.

We have laid down the theoretical framework for this methodology to study
the evolution of networks. One possible follow-up to this work is constructing a similarity
metric for network evolution processes. Since all of this work was doing using simulated
data, future work would apply these methoéolgies to an empirical dataset. Because our
model assumes the directed edges show potént_ial to influence, one of the main chaﬂenges
in a,pplying' this to a real-world dataset is understanding how to determine the presence,

magnitude, and direction of potential to influence.



Appendix

The full results of the FANMOD algorithm are included below. If an individual cell
value has an asterisk, then this motif frequency is statistically significant. If the motif

name is bolded, then all values in that row are statistically significant.

Table 4 The frequency each of the network motifs in homophily networks

Motif ID | 1100 Nodes 1200 Nodes 1300 Nodes 1400 Nodes 1500 Nodes 1600 Nodes 1700 Nodes 1800 Nodes 1900 Nodes
Motif 6 21.989% 22.053% 22.834% 21.845% 22.366% 23.251% 22.495% 23.158% 23.54%
Motif 12 |42.518% 42.987% 43.957% 43.925% 42.927% 43.637% 44.366%  43.224% 44.761%
Motif 14 4.9689% 4.267% 3.916% 4.2269% 4.792% 4,2968% 3.8062% 4.424% 3.5245%
Motif 36 |17.689% 19.217% 19.194% 19.134% 18.351% 18.724% 19.08% 18.246% 19.39%
Motif 38 |5.336% 5.0244% 4.6396% 4.5293% 4.8366% 44178%  4.2567%  4.5949% 38772%
Motif 46 |0.47597%  (.39632% 0.273651%  0.26726%  0.39376% 0.30864% 0.35184%  0.4132% 0.26124%
Motif 78 0.2406% 0.21577% 0.13225%  0.18286%  0.2786% 0.18155% 0.19899%  0.23922%  0.14804%
Motif 102{0.65803%  0.50641% 0.39674%  0.57671%  0.58692% 0.43573%  0.49027%  0.49397 0.39839%
Motif 140|1.0722% 0.90273% 0.74205%  0.78419%  0.81724% 0.68688%  0.79019%  0.70523%  0.6335%
Motif 164 |4.3674% 3.972% 3.5523% 3.9772% 4.0565% 3.6492% 3.5991% 3.9642% 3.1283%
Motif 166 [0.47597%  0.34788% 0.26817%  0.3833% 0.40862% 0.34193%  0.36049% 0.38213%  0.26559%
Motif 174 (0.19876%  0.10568% 0.080817% 0.15824%  0.18202% 0.060596% 0.10671%  0.14291%  0.071841
Motif 238 | *0.010461% *0.0044035% *0.007347% *0.01055% *0.0037147% 0.0% *0.00865% *0.012427% 0.0%

Table 5 The frequency each of the network motifs in leverage networks

1100 Nodes 1200 Nodes 1300 Nodes 1400 Nodes 1500 Nodes 1600 Nodes 1700 Nodes 1800 Nodes 1900 Nodes
Motif 6 32.104% 39.945% 34.042% 34.573% 34.601% 34.53% 35.337% 37.442% 34.428%
Maotif 12 26.831% 23.758% 25.013% 23.746% 22.064% 27.461% 22.628% 27.093% 24.608%
Motif 14 1.0464% 0.84743%  1.1936% 1.4607% 1.6337% 1.8131% 0.94820% 1.5931% 1.4151%
Motif 36 |35.73% 32.397% 35.962% 16.118% 37.859% 32.475% 37.358% 30.012% 35.966%
Motif 38 |2.2366% 1.8208% 2.3773% 2.2885% 2.0704% 1.8483% 2.1463% 2.3417% 1.9250%
Motif 46 |0.070007% 0.044996% 0.1061% 0.11301%  0.11203%  0.086805% 0.072272%  0.066905%  0.095196%
Motif 78 [*0.018423% *0.018748% *0.016578% 0.036728% *0.035134% *0.037576% 0.01095% *0.039782% 0.029291%
Motif 102 |0.018423% 0.0074993% 0.026525%  0.014126% 0.010038% 0.018788% 0.0065702% 0.016274%  0.010984%
Matif 140 |0.055260% 0.018748% *0.046419% 0.019777% 0.0050191% 0.044622% 0.021901%  0.04159% 0.020138%
Motif 164 |1.7833% 1.0462% 1.1406% 1.5624% 1.5133% 1.5046% 1.3535% 1.2821% 1.4279%
Motif 166[0.10685%  0.086242% 0.069620%  0.056505% 0.092853% 0.086895% 0.1095% 0.063289%  0.067736%
Motif 174 |0.0% 0.0% *0.0066313% *0.011301% 0.0025095% 0.0023485% *0.0087602% *0.0090413% 0.0054921%
Motif 238 |0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Table 6 The frequency each of the network motifs in the Barabasi-Albert networks

1100 Nodes 1200 Nodes 1300 Nodes 1400 Nodes 1500 Nodes 1600 Nodes 1700 Nodes 1800 Nodes 1900 Nodes
Motif 6 |10.244%  10.830%  0.7008%  11.286%  10.009%  10.813%  11.127%  10.949%  11.114%
Motif 12 [22.306%  22.41%  20.005%  22.584%  21.756%  22.338%  22.344%  *22.954%  23.13%
Motif 14 |22.030%  21538%  22.502%  22.680%  21.937%  22.349%  22.154%  21.276%  21.802%
Motif 36 [10.094%  11.645%  10.889%  11.027%  117% 11.468%  11.043%  11.609%  11.286%
Motif 38 |0.058392% 0.10344%  0.056162% 0.037044% 0.046636% 0.022788% 0.022434% 0.01583%  0.044118%
Motif 46 |0.016683% 0.022166% 0.024961% 0.037044% 0.023318% 0.017001% 0.011217% 0.026384% 0.016043%
Motif 78 [11.305%  11.009%  11.85%  10.817%  11245%  10.967%  11.122% . 10.464%  10.56%
Motif 102|0.066733% 0.066490% 0.040022% 0.043218% 0.020148% 0.051273% 0.022434% 0.026384% 0.0080215%
Motif 140|0.0% 0.014778% 0.01248%  0.006174% 0.0058205% 0.005607% 0.016826% 0.0052768% 0.0080215%
Motif 164|22.806%  22.255%  23.008%  21418%  23.167%  21.022%  22.064%  22.50%  21.975%
Motif 166 0.025025% 0.0073888% 0.037441% 0.018522% 0.020148% 0.017001% 0.011217% 0.021107% 0.016043%
Motif 174|0.05005%  0.088606% 0.043682% 0.024696% 0.046636% 0.017001% 0.061694% 0.063321%  0.032086%
Motif 238 0.0% 0.0% +0.012348% *0.011394% 0.0% 0.0% *0.0080215%

*0.01248%

0.0058295%
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