
Community Detection as a Method to Control

For Homophily in Social Networks

Hannah Worrall
Senior Honors/QSSS Thesis

April 30, 2014

Contents

1 Introduction 2
1.1 Background . 2

2 Literature Review 4

3 Simulation Methods 5
3.1 Network Creation . 5
3.2 Network Evolution . 7
3.3 Community Detection . 7
3.4 Creating A Table To Analyze The Network 8
3.5 Computational Difficulties 8

4 Proof Of Concept 9
4.1 Latent Variable Removes Predictive Power of Neighbor Nodes

In Networks With No Contagion 9
4.2 Communities Align With Latent Variables 10

5 Testing If Community Controls For Homophily 12

6 A Note on Community Misspecification 14
6.1 True Number of Communities is Less than Believed 14
6.2 True Number of Communities is Greater Than Believed . . 14

7 Conclusion 15

1

1 Introduction

People tend to be very similar to their friends. Groups of friends often
have similar political affiliations, exercise habits, and socioeconomic back-
grounds. Is this similarity because people become friends and then start
influencing each other, or because their friendship begins due to similar
traits? If one person starts exhibiting similar behavior as their friend, is
it because their friend caused them to behave that way or because their
similar traits have caused them both to start exhibiting the trait? This
question is difficult to answer, but researchers investigating how people in-
teract with each other often encounter the issue. In this paper I put forth a
method to help differentiate between one friend influencing another (conta-
gion) and two friends behaving similarly because the cause of the behavior
is the same reason they became friends in the first place (homophily).

1.1 Background

Many essential questions in the social sciences involve networks. A network
is a structure composed of nodes and edges. A node can be thought of as
an individual of interest and an edge is a connection between nodes. Social
scientists study social networks in which each node is an individual actor
and each edge is some sort of relationship between actors. For example,
many studies have examined friendship networks, in which each node is a
person and each edge indicates friendship between individuals. Much re-
search has been done on networks in various fields. In the social sciences,
one of the most important goals in analyzing social networks is determining
causal inference within the network.

This is a difficult undertaking. A social scientist wants to know if at-
tributes of individuals can be passed through the network. For example,
he might want to know if an individual is more likely to become obese if
his friends are also obese [2]. However, this question is complicated by the
formation of friendship. Perhaps two people are friends because they both
go to a burger restaurant every week. In this case both friendship and
obesity have the same underlying cause. These two cases can be seen in
the causal graphs below. The graph on the left depicts the case where one
friend causes the other to become obese, while the graph at right depicts
the case where the obesity is caused by the fondness for burger restaurants.
The X are the individuals’ underlying characteristics (in this case a strong
liking for burger restaurants) and the Y are their observed characteristics
(in this case obesity). The individuals are called i and j and their friendship
is indicated by Aij . Therefore Xi is the underlying trait of person i, Yjt is
the observed variable of person j at time t, and so on.

2

Xi
Xj

Yi,t−1

Yj,t−1

Yj,t

Xi Xj

Ai,j

Yi,t Yj,t−1 Yj,t

Ai,j

It is therefore very important for social scientists to be able to differentiate
between homophily and contagion.

Shalizi and Thomas published a paper in 2011 which showed that it was
impossible to differentiate between these two influences without making
very strong assumptions about the underlying network structure [5]. The
crux of their argument lies on the causal graph displayed below.

Xi

Ai,j

Xj

Yj,t

Yj,t−1Yi,t−1

Yi,t

?

In this graph we can see homophily: the Xi and Xj are causing the forma-
tion of the friendship tie Aij . If Yj,t−1 and Yi,t are connected in the graph,
then contagion is present. This edge may or may not exist, and determining
if it does in specific applications is the goal of many studies. There exists
a path between Xj and both variables whether or not contagion edge is
present. Thus Yj,t−1 and Yi,t are correlated and one contains information
about the other [5]. Therefore homophily looks like contagion, unless you
can control for every trait in X or make strong assumptions [5].

Shalizi and Thomas said it might be possible to determine bounds for the
influences, which would help determine if the attribute in question was in
fact being passed along friendship ties. In particular, they thought that
grouping individuals in a network into communities would help control for
latent characteristics.1 The idea behind this is that people are likely to
befriend people who have similar characteristics, and thus groups of friends
likely have the same shared characteristics and form communities within
the network whose members share these characteristics. Membership in a

1A community is a collection of nodes in which the probability of an edge forming
between nodes within the community is greater than the probability of an edge forming
between a node within the community and a node outside of it.

3

community would thus be an indicator of the similar characteristics. Con-
trolling for community might thus be similar to controlling for the actual
characteristics.

This report shows when this technique might work. If it is possible to par-
tially control for latent characteristics by controlling for community this
would greatly help social scientists determine the presence of causality in
social networks. Since so many questions in the social sciences can be mod-
eled by a social network, this would be very helpful across many disciplines.

Essential to this approach is community detection. It should only work
if the communities detected by an algorithm are correct. I am defining cor-
rect communities to be communities which are consistent. In other words,
if we let c be the true community of a node, and ĉ to be the community
detected by a community detection algorithm for the same node, the com-
munity detection is consistent if

P [c = ĉ]→ 1

as
n→∞

with n being the number of nodes in the network. Note that the method
assumes communities will match up to the Xi if the method works. In other
words, the method works if nodes with similar Xi have the same c. Also
note that this definition describes asymptotic behavior. Therefore for any
test that relies on community detection I will have to check its behavior as
the network grows. Networks tend to grow in one of three ways, described
in section 4.2, so I will check the method against each type of growth.

2 Literature Review

Many key conclusions in the social sciences have been based off of work
with social networks. A commonly used example is Christakis and Fowler’s
2007 paper on the spread of obesity through social networks [2]. This paper
seemed to show that obesity could be thought of as an infectious disease
[2]. Is this a true effect, or is homophily to blame? This is a very important
question in the social sciences. The issue of homophily has been discussed
in the literature. For example, McPherson et all wrote a paper in 2001
which discusses homophily and how it creates social cliques and communi-
ties [4].

Social scientists have thus been aware that homophily and contagion may be
confounded in social networks for some time. One response to this problem
has been to collect as much data as they can, and hope that the homophily
is captured in one of the many variables they measure. Obviously this
method has no guarantee of solving the problem, and if researchers assume
that they have controlled for everything then there is a risk that they move
forward with misleading and false results.

This paper is based off of the work of Shalizi and Thomas. In 2010 they
finished a paper entitled “Homophily and Contagion Are Generically Con-
founded in Observational Social Network Studies” [5]. In this paper they
show that “distinguishing [homophily and contagion] from one another re-
quires strong assumptions on the parametrization of the social process or

4

on the adequacy of the covariates used (or both)” [5]. Their paper examines
graphical causal models to demonstrate this conclusion [5]. They then put
forth several potential partial fixes to the problem.

The first potential solution involves not conditioning on the social net-
work during inference, thereby not activating the collider 2 in the graphical
causal model represented above [5]. They also suggest attempting to place
bounds on the causal effect. This method has been attempted with some
success [5]. Greg Ver Steeg and Aram Galstyan wrote a paper entitled
“Statistical Tests for Contagion in Observational Social Network Studies”
in April 2013 as a follow-up to Shalizi and Thomas’s paper, in which they
successfully place a upper bound on apparent contagion due to homophily,
demonstrating the presence of contagion [6]. Lastly, Shalizi and Thomas
suggest that controlling for cluster within the social network might help
identify the presence of causality [5]. This is the method I will be testing.

3 Simulation Methods

In order to test if it is possible to control for homophily in a network by
including community membership I simulated and evolved networks. This
section describes the method I used.

3.1 Network Creation

First I generated the basic structure of my networks. I created n nodes.
Each node in the network was assigned a latent variable. For simplicity, this
variable was binary, with equal probability of being a 0 or a 1. These two
numbers represent the two possible states of the variable. I then assigned
each node an observed variable. This variable was also binary. There
was a 70% chance of it being the same as the latent variable and a 30%
chance of it being different. These probabilities were largely arbitrary. The
70% probability is large enough that most nodes have the same state for
both their observed and latent variables, but not so large that there aren’t a
good number of nodes for which that isn’t true. Further work might involve
altering these probabilities and seeing what changes in the simulation. I
then created the social network in the following way:

1. I assigned a base probability a of a connection between any two nodes,
and an additional probability b for a connection between two nodes
with the same latent variables. Therefore the total probability of a
connection between nodes with the same latent variable was a + b,
while the probability of a connection between nodes with differing
latent variables was a. If b is greater than zero in this setup the
network contains homophily, as nodes tend to form edges with nodes
with the same underlying latent variable.

2. For each i, j pair of nodes, I simulated the outcome of a Bernoulli
random variable with probability as described above. This outcome
was binary. If the result was a 1, I created an edge between nodes i
and j. If the result was 0 I did not. I did this only once for each pair
and did not do it for a node and itself.

2A collider is a variable in a causal graph which has two variables which directly
cause it. Conditioning on the variable allows information to pass through it, while not
conditioning on the variable blocks the flow of information.

5

3. For parts of my analysis I required that each node be connected to at
least one other node. This behavior was desired if I wanted to work
with a small network. If this was the case, after I created my network
I checked each node to see if it had a neighbor. If it did, I moved on
to the next node. If it did not, I did one of the following:

(a) With probability .7 I created an edge between the node and
another node with the same underlying latent variable.

(b) With probability .3 I created an edge between the node and
another node with a different underlying latent variable 3.

These networks were represented by a n × n matrix. Each element Aij is
binary: It is a 1 if there is a connection between nodes i and j and a 0
otherwise. I used undirected graphs only. This means that each edge of
the graph has no orientation. The connection between nodes is a symmet-
ric relationship between them. Since my graphs are undirected the matrix
containing the connections is symmetric (Aij = Aji).

In some cases, if the expected number of edges belonging to a node (also
known as the degree of a node) is less than 1, the network will break apart
into many small pieces. Below is a small network in which this occurs.
Analyzing such networks is a waste of time. For an idea of why this is the
case, examine the graph below. The network is broken into pieces, and it
is impossible to find a path between most nodes. In addition none of the
subnetworks have a significant number of nodes. While it is possible to
analyze a subnetwork within the larger network, this should only be done
if the largest subnetwork contains a large number of the total nodes in the
whole network. I used a cutoff of one third, but it isn’t essential this cutoff
be used. Trying to analyze a network that is as scattered as the one below
wouldn’t be useful, as no subnetwork can contain enough information about
the larger network to be useful.

3Again, the specific probabilities aren’t important

6

3.2 Network Evolution

Social networks change over time. This change is called evolution. I evolved
my network in one of two ways. In one way I evolved my network such that
it would have contagion. In the other I evolved it so it did not. For networks
with contagion I evolved them in the following way:

1. I selected how much time I wanted to elapse, t, and how often I got
a snapshot of my network s. For example, I may want my network
to evolve 1000 times, and get an idea of what it looked like every ten
evolutions.

2. At each time point I selected a node at random to evolve.

3. I then forced the node to switch its observed variable to the value of
one of its neighbors observed variables, chosen at random.

4. If this evolution was at a time point to be saved, I recorded the state
of the network at this time point. In other words, I recorded the
observed variable value for every node at this time point.

I ended up with an n× t
s matrix which I will call B. Each element Bik is

thus the value of node i at time k.

Similarly I evolved networks with no contagion in the following manner:

1. I selected how much time I wanted to elapse t, and how often I got
a snapshot of my network s. For example, I may want my network
to evolve 1000 times, and get an idea of what looked like every ten
evolutions.

2. At each time point I selected a node at random to evolve.

3. I then had the selected node’s observed variable match up with its
latent variable with probability .7, and take the opposite value with
probability .3.

4. If this evolution was at a time point to be saved, I recorded the state
of the network at this time point. Again, I recorded the observed
variable value for every node at this time point4.

Like before I end up with a n × t
s matrix with elements defined the same

way as in the network with contagion.

3.3 Community Detection

I then determined the community membership of each node. I used the R
package igraph’s [3] community detection algorithm spinglass.community.
This package uses simulated annealing to find the optimal community struc-
ture. It does this by assigning each node a spin state, which can be thought
of as a guess for its true community, and then finding the collection of
spin states in which the most nodes have the same spin states as their
neighbors but have different spin states from their non-neighbors. I used
spinglass.community because it was able to detect the communities in my
networks well. Any community detection algorithm should work, however.
Since my network had binary variables I set the number of communities at
two.

4Yet again, the exact probabilities used here aren’t important

7

3.4 Creating A Table To Analyze The Network

After I initialized network and had evolved it over time I still needed a way
to organize the information in a way that was easy to run regressions on.
To do this I created a matrix which for every pair of i, j with nodes i 6= j
at each saved time point t

s contained the following:

1. Node i’s observed variable

2. Node j’s observed variable

3. Node i’s detected community

4. Node j’s detected community

This matrix C could then be used to analyze the network.

3.5 Computational Difficulties

Determining the usefulness of using communities to control for homophily
requires growing the networks, which will be described later. This can cause
computational difficulties. C grows proportional to n2 × t

s , and thus be-
comes millions of rows long very quickly. For reference, a network I created
with 1000 nodes had a C matrix that was 10,904,627 rows long. It isn’t
feasible to create this table and then run a logistic regression on its entirety
with networks of more than ≈ 1000 nodes.

There are two key bottlenecks in this problem. The first is the creation
of C itself. No matter how efficient the algorithm used to construct the
matrix, at large network sizes it becomes incredibly time intensive to cre-
ate the matrix. The matrix also begins to take up an incredible amount of
memory.

The next bottleneck is the actual running of the logistic regressions. Putting
the whole matrix into any logistic regression software results in a wait of
hours before the computation is done. Even if one uses packages in R devel-
oped to run on large datasets this computation is extremely time intensive.

Both these issues appear when networks have only a thousand nodes. Many
real problems require networks which contain many more nodes than this.
Therefore it is necessary to speed up the analysis of a network.

I solved this problem by sampling from C without ever actually creat-
ing it. To do this I sampled from the n nodes and t time points m times
with replacement. For each node selected, I chose one of its neighbors at
random, then determined the value of each nodes′ observed variable at the
randomly generated time t. In this way I could create a sample from the
larger table without ever actually creating it. This sped up the process
significantly. Creating this sample from the larger table is O(m), but the
amount of time it takes to run doesn’t increase with network size. This
method can also be combined with stochastic gradient descent 5 to find the
regression coefficients which maximize the likelihood of the data. Instead of
taking hours to run, this method takes only minutes while using much less

5Gradient descent is an optimization method in which steps are taken against the
gradient of a function in order to find an optimum. Stochastic gradient descent does this
optimization method with random samples of the data, which is useful for large datasets.

8

memory. Using this technique allowed for analysis of much larger networks.
Other solutions to the computational difficulties exist, but I found that this
one allowed me to grow my networks to a suitable size.

At this point I have described all the simulation techniques I used dur-
ing this problem. I now move on to a discussion of controlling homophily
by including community membership.

4 Proof Of Concept

The basic idea behind using community to control for homophily is that
nodes that have clustered together tend to have the same underlying la-
tent variables. If communities of nodes have the same underlying latent
variables, then inserting each nodes’ community into the regression should
control for homophily. This idea has buried within it two critical assump-
tions.

1. Inserting the true latent variable into the analysis should control for
homophily.

2. Communities align with latent variables

I will now check these assumptions.

4.1 Latent Variable Removes Predictive Power of Neigh-
bor Nodes In Networks With No Contagion

The end goal is to be able to determine if there is contagion present in a
network or not. Therefore one would like to run a regression with node
i’s observed variable as the response variable and its neighbors’ observed
variables as the explanatory variables. Inserting the true latent variables
into this regression should remove the predictive power of the neighbor
nodes’ observed variables in the case where there is homophily and no
contagion. Since all of my variables are binary, this regression is logisitc,
and takes the form:

ln(odds(Ynode = 1)) = β0+β1∗Yneighbor+β2∗Xnode+β3∗Xneighbor+eYnode

Each node will thus become many different observations. For each time step
each node will have several observations, with one for each of its neighbors.
If the method I am investigating works at all, the coefficient β1 should be
significant only if the network has contagion. Furthermore, in the network
with no contagion the β1 should become significant if the latent variables
are left out of the regression. To test this, I simulated two networks. The
first had homophily only, while the second had homophily and contagion.

1. First I checked to see if including the latent variables of the node and
its neighbor in the regression did not make the β1 insignificant in the
network with contagion. The regression output is displayed below.
As expected the observed characteristic of node j is still useful in ex-
plaining node i’s observed variable.

9

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4529719 0.0124666 -36.335 <2e-16 ***

neighborsObserved 0.3160281 0.0120499 26.227 <2e-16 ***

nodeLatent 0.0005576 0.0121210 0.046 0.963

neighborsLatent 0.1864797 0.0121221 15.383 <2e-16 ***

2. I then began working with the network with no contagion. I ran a
regression using just the observed variable for node j to predict the
observed variable of node i. Note that the observed variable of node j
is highly significant at any reasonable significance level. This indicates
that contagion and homophily are confounded in this network.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.029526 0.008619 -3.426 0.000613 ***

NeighborsObserved -0.051050 0.012358 -4.131 3.61e-05 ***

3. Finally I ran the regression with the latent variables included for the
network with no contagion. The results are displayed below. In-
cluding the latent variables removes the significance of the neighbors’
observed variables and directly accounts for the homophily in the
network, as was expected.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.79630 0.01267 -62.825 < 2e-16 ***

NeighborsObserved -0.01437 0.01407 -1.021 0.30702

NodeLatent -0.04045 0.01407 -2.874 0.00405 **

NeighborsLatent 1.46704 0.01322 110.945 < 2e-16 ***

Much of the significance is placed on the neighbor′s latent variable rather
than the node′s latent variable. This is random: the opposite could just
as easily been true. This is because the true variables are very highly
correlated. In any case, inserting the true latent variable into the analysis
controls for homophily.

4.2 Communities Align With Latent Variables

If the community detection is consistent, i.e the detected community is the
same as the true community, then these communities should line up with
the latent variables, and therefore should control for homophily. Therefore
it is worth considering when community detection is consistent. Yunpeng
Zhao, Elizaveta Levina and Ji Zhu wrote a paper on this topic in 2012
entitled “Consistency of Community Detection In Networks Under Degree-
Corrected Stochastic Block Models” [8]. They show that asymptotically
community detection will be consistent if :

1. the community detection function is well behaved

2. under the stochastic block model, which states that the E[Aij] =
Pij , with Pij being the probability of a connection between i and j,
community detection will be asymptotically consistent when:

(a) Links within communities are more likely than links between
communities

10

(b) expected degree/log(n)→infinity⇒ strongly consistent. A net-
work is strongly consistent if every node in the community ends
up in its true community.

(c) expected degree→infinity⇒ weakly consistent. A network is
weakly consistent if the proportion of community detection er-
rors becomes less than an arbitrary ε asymptotically [8].

In order to test if consistent community detection in my networks resulted
in a match up with the latent variables I created networks with homophily,
no contagion, and a probability of a connection between like nodes just .01
more likely than the probability of a connection between dissimilar nodes.
I then grew my networks to see if community detection eventually became
consistent. I grew my networks in three ways:

1. The probability of an edge is kept fixed, and the degree of the node
grows with the size of the network.

2. The average degree of the network grows with log(n), and the prob-

ability of a connection between nodes is multiplied by log(n)
n

3. The average degree of the network is kept constant and the probability
is multiplied by 1

n .

Community detection is likely only consistent over the first two conditions.
To test this I grew my networks until the rate of misalignment dropped off
significantly. The rate of misalignment is the percent of nodes which are
not assigned to the community in which the majority of the nodes share
its latent variable. This drop off can be seen in this graph, which was
created using the first condition. With a network size of 5000 nodes the

communities align very with the underlying latent variables. The table
below shows how each nodes’ latent variable matches up with its detected
community.

Community
Latents 1 2
0 5 2470
1 2418 7

The misalignment rate has dropped to 1.4%.
For the second condition the misalignment rate drops off similarly, although

11

it takes quite a bit longer. At a network size of 20,000 nodes the community
detection works very well:

Community
Latents 1 2
0 9888 57
1 51 9954

But for the third condition the community detection doesn’t work well. At

the largest size I was able to grow the network (20,000 nodes) the commu-
nity detection wasn’t lining up with the true latent variables at all:

Community
Latents 1 2
0 1323 2683
1 2550 1201

Therefore community detection is significant and lines up with the latent
variables asymptotically when the networks are grown such that the ex-
pected degree of a node grows with log(n) or n.

5 Testing If Community Controls For Homophily

I tested if adding the community membership controls for homophily. I
tested the method based on the three conditions for growing the network

12

described above.

1. I first tested the condition where the expected degree of a node in the
network grew with n. This is the condition in which each node has the
most information. I used a network of 5000 nodes with homophily but
no contagion. As expected, when the detected communities weren’t
included in the regression the neighbors’ observed variables were sig-
nificant:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.15690 0.02025 -7.746 9.48e-15 ***

neighborObserved 0.35499 0.02840 12.499 < 2e-16 ***

Next I included the detected communities:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.58945 0.06756 38.327 <2e-16 ***

neighborObserved 0.02589 0.03390 0.764 0.445

nodeCommunity -1.73332 0.03564 -48.641 <2e-16 ***

neighborCommunity 0.01286 0.03819 0.337 0.736

Including community controlled for the homophily: The neighbors’
observed variable is no longer significant. Therefore the method
worked.

2. Next I tested the condition where the expected degree of a node in
the network grew with log(n). I used a network of 20,000 nodes with
homophily but no contagion. As expected, when the detected com-
munities weren’t included in the regression the neighbor’s observed
variables were significant:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.29719 0.02022 -14.70 <2e-16 ***

neighborObserved 0.60211 0.02861 21.05 <2e-16 ***

Again, I next included the community variables.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.44566 0.06139 39.840 <2e-16 ***

neighborObserved 0.03937 0.03344 1.177 0.239

nodeCommunity -1.7366 0.07731 -22.463 <2e-16 ***

neighborCommunity 0.09350 0.07843 1.192 0.233

Including community controlled for the homophily: The neighbors’
observed variable is no longer significant. Therefore the method
worked.

3. Finally I tested the condition where the expected degree of a node
in the network remained constant. Recall that community detection
wasn’t consistent under this condition. Like before when the de-
tected communities weren’t included in the regression the neighbor’s
observed variables were significant:

13

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.18225 0.02040 -8.935 <2e-16 ***

neighborObserved 0.49630 0.02853 17.397 <2e-16 ***

However, adding community to the regression doesn’t control for the
homophily:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.09247 0.05189 -1.782 0.0747 .

neighborObserved 0.49554 0.02853 17.368 <2e-16 ***

nodeCommunity -0.01988 0.03671 -0.542 0.5881

neighborCommunity -0.03957 0.03671 -1.078 0.2810

Since the community detection wasn’t consistent and didn’t match
the latent variables the method didn’t work.

6 A Note on Community Misspecification

The analysis so far has assumed knowledge of the correct number of com-
munities. In real-world applications this may not always be the case. I
will now take a look at what happens to the method when the number of
communities is misspecified.

6.1 True Number of Communities is Less than Be-
lieved

One case of community misspecification occurs when there are fewer com-
munities in a network than a user believes. To test how the method worked
when the number of communities specified was not equal to the number of
true communities in the network I simulated a network with 5000 nodes
as described above, but asked my community detection algorithm to find 3
communities instead of 2. The algorithm found two large communities and
one small community of 12 nodes. I then included community membership
in the regression as defined above, and found that in this case commu-
nity membership still controlled for homophily, even though the number of
communities was misspecified.

6.2 True Number of Communities is Greater Than Be-
lieved

The other case of community misspecification occurs when there are more
communities in a network than a user believes. In order to test this case
I created a new simulation which has three states of observed and latent
variables. Each variable can be high, middle, or low. Each latent variable
has an equal probability of being high, middle, or low. I then chose the
observed variables by having them align with their corresponding latent
variable with probability .7 as before. With probability .3 I had them take
on one of the other two states with a .5 probability of each. I then evolved
the network as before. When I ran the community detection algorithm I
told it to find two communities instead of the three that existed in the
network. It correctly identified one community but combined the other two
into one large community.

14

In order to determine if the method works in this case I ran two multi-
nomial logistic regressions [7]. The first looked much like the previous
regression models: I regressed each node i’s observed variable at each time
t
s against each of its neighbors j’s observed variable in addition to both
nodes’ detected community. I then ran a second multinomial logistic re-
gression. This one excluded j’s observed variable. Next I subtracted the
two models’ deviances. This result was 133.98. Finally I checked to see if
this difference was significant. If it was, then j’s observed variable is useful
to the model and community doesn’t control for homophily. The p-value I
got was 1.07× 10−20. Therefore community doesn’t control for homophily
when the true number of communities is greater than one expects.

7 Conclusion

Through simulation I was able to show that if the probability of a connec-
tion between nodes remains constant as a network grows then homophily
can be controlled for by including community membership in the regres-
sion equation. The method also works if the expected degree of the nodes
grows with the log of the network size. The method didnt work when the
expected degree of a network remained constant as the size of the network
grew. This is as expected. The probability of a connection between nodes
drops towards zero quickly when the expected degree is kept constant, and
thus the nodes don’t contain enough information for consistent community
detection, and thus community can’t be used to control for homophily.

This method can be used to determine if there is causation in a network.
However, it requires consistent community detection. If community detec-
tion is consistent using community membership to control for homophily
should be successful. Determining if community detection is consistent is
still an open problem. Therefore determining when one can tell this method
is working without already knowing the true communities could be an area
of further study.

References

[1] Carter T. Butts, Mark S. Handcock, and David R. Hunter. network:
Classes for Relational Data. Irvine, CA, March 15, 2013. R package
version 1.7.2.

[2] Nicholas A. Christakis and James H. Fowler. The spread of obesity
in a large social network over 32 years. The New England Journal of
Medicine, 357:357 370–379, July 2007.

[3] Gabor Csardi and Tamas Nepusz. The igraph software package for
complex network research. InterJournal, Complex Systems:1695, 2006.

[4] Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of
a feather: Homophily in social networks. Annual Review of Sociology,
27:415–444, 2001.

15

[5] Cosma Rohilla Shalizi and Andrew C. Thomas. Homophily and conta-
gion are generically confounded in observational social network studies.
Sociological Methods and Research, 40:211–239, 2011.

[6] Greg Ver Steeg and Aram Galstyan. Statistical tests for contagion in
observational social network studies.

[7] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S.
Springer, New York, fourth edition, 2002. ISBN 0-387-95457-0.

[8] Yunpeng Zhao, Elizaveta Levina, and Zhu Ji. Consistency of community
detection in networks under degree-corrected stochastic block models.
The Annals of Statistics, 40, 2012.

16

	Introduction
	Background

	Literature Review
	Simulation Methods
	Network Creation
	Network Evolution
	Community Detection
	Creating A Table To Analyze The Network
	Computational Difficulties

	Proof Of Concept
	Latent Variable Removes Predictive Power of Neighbor Nodes In Networks With No Contagion
	Communities Align With Latent Variables

	Testing If Community Controls For Homophily
	A Note on Community Misspecification
	True Number of Communities is Less than Believed
	True Number of Communities is Greater Than Believed

	Conclusion

