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Abstract

One way to analyze how our brains function is to apply statistical models to neural
data. In 1998, Shadlen and Newsome observed that a balanced random walk integrate-
and-fire model can model experimental data such as single-unit recordings of rhesus
monkeys. Using this model, I study the spike count correlation of two neurons under
varying conditions. Through simulations, I look at the relationship of spike count
correlation across two neurons to firing input rate when the inputs are independent and
correlated. After this step, I look at whether an oscillatory input affects synchrony,
i.e., synchronous firing of two neurons in close temporal proximity. It is crucial to
understand what affects synchrony as a little change in synchrony can cause huge
impacts in cellular processes in the brain and in how neurons communicate with each
other.
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1 Introduction

In the field of neuroscience, the general goal is to study how behavior is represented by
neural activity. That is, how does the brain represent and process the actions, thoughts,
and external inputs that will enable us, as individuals, to function? Computational neu-
roscientists want to analyze these neural activities. They want to understand the primary
way neurons represent and communicate information in the nervous system such as spike
trains, which are a sequence of neural discharges. One important contribution of statistics to
the field of computational neuroscience is to apply statistical models to spike train data to
distinguish the unknown signals from the noise.1 We apply these models so we can use their
known properties to explain the data.2 Some existing computational models such as the
leaky integrate-and-fire model or the Hodgkin-Huxley model are mathematical derivations
from resistor-capacitor models.

In 1964, Gerstein and Mandelbrot introduced another model: the random walk model.
They showed that the signal outputs for single neurons can be manifested in a simple inte-
gration of the incoming inputs from surrounding neurons to the target neuron. These inputs
had equal strength on the target neuron to go up to the spike threshold, a threshold for
which a neuron will spike, or go away from the threshold. Furthermore, M. Shadlen and W.
Newsome (1998) then proposed the balanced random walk integrate and fire model (RW-IF)
which could exhibit properties similar to those of experimental data. They showed that,
with a few parameters, they could simulate spike discharges like those from single-electrode
recordings3 from a single neuron.

Using models like the RW-IF model, computational neuroscientists can then study neural
activity such as synchrony between neurons. In a recent study, M. Economo and J. White
(2012) were interested in the irregular firing rates of neural discharges from cortical neurons.
Using models, they looked at the increased oscillations that came from synchrony among
neurons. It has been observed that many cortical neurons in close proximity often share
oscillatory drive as well as having other independent inputs. They found that the oscillatory
drive relative to the other inputs, which we consider “noise”, causes neurons to have excess
synchrony. In addition, they found that the balance between the positive inputs that drive
a neuron to spike and the negative inputs that does otherwise has an important effect on
synchrony between neurons as well.

In this paper, I hope to illustrate the relationship for spike count correlations between
two neurons for the balanced random walk integrate-and-fire model. A standard model
for sequences of spike trains involves a “random walk of excitatory and inhibitory inputs
(explained later). In particular, a simple balanced neural model (balanced between the
amount of excitation and inhibition) can produce many characteristic features of recordings

1Kass, Eden, Brown (2013) p. 11, 22
2It should be noted that while these models can help understand the data better, it cannot fully represent

it. Rather, the models help further explain, predict and understand the observable data. As the famous
statistician G. Box once said, “All models are wrong but some are useful.”

3A probe that can measure the current from a single neuron
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from rhesus monkeys (Shadlen & Newsome 1998). While there are many research papers
that work with simple models such as the random walk integrate and fire model, there is very
little research done in looking at the fluctuations in neural firing rates across two neurons
and the correlated spiking behavior of those neurons. The main motivations for the project
can be addressed in the following three questions of interest.

1. How do spike count correlations between neurons change as their firing rates fluctuate?

2. How does spike count correlation between neurons change when the inputs are them-
selves correlated with each other?

3. Does oscillatory inputs affect the synchrony of firing across pairs of neurons?

2 Background

Before I answer these questions, it is important to understand the biological background and
terms related to the brain. In any given brain, there are more than 1010 neuron cells with
1014 connections (synapses) that link them together. Through these synapses, the neurons
are able to send information signals from one presynaptic neurons (the neuron that sends
a signal) to another postsynaptic neuron (the neuron that receives the signal). The signals
from the presynaptic neuron stimulates an electrical shock in the postsynaptic neuron. This
electrical pulse is called an action potential (see Figure 1a). The electrical potential of which
the pulse goes up and down is called a membrane potential. The membrane potential will
change dependent on the chemical ions that enter the postsynaptic neuron.

In the case of transmitting information, the presynaptic neurons send certain chemicals
called neurotransmitters that can open ion channels that line the cell membranes of the
synapses. The channels control the flow of ions such as K+, Na+, Ca2+, and Cl− into the
postsynaptic neuron. Some neurotransmitters trigger excitatory drive to the spike threshold,
a threshold where it will trigger a spike, from the resting potential, the normal membrane
potential state in the postsynaptic neuron. This is called an excitatory postysynaptic poten-
tial (EPSP). Some other neurotransmitters causes inhibitory postsynaptic potential (IPSP)
in which the chemicals act as inhibitory inputs which drive the membrane potential down
to the resting potential.4

4For further information, refer to Trappenberg (2002)
5image from http://psychlopedia.wikispaces.com/action+potential
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(a) Action Potential5

(b) Spike Train

Figure 1: An action potential occurs when the membrane potential reaches the spike thresh-
old. The spike threshold will reset to the resting threshold or some step below. In most
cases, there will be a refractory period before the process restarts again. Each spike can be
then assimilated into a spike train which is a binary representation of spike events in time
where ones represent a spike and zeros represent a non-spike period.

The spikes from the postsynaptic neurons can be assimilated into a spike train (see Figure
1b). A spike train is a time-series of recorded spikes from an individual neuron in the brain.
It is a binary representation of spikes on a time scale where ones will indicate a spike and
zeros as non-spikes. It is widely accepted that the brain decodes the spike rates and number
of spikes in order to generate information about the outside world. Therefore, some compu-
tational neuroscientists seek to also decode the spike trains by utilizing statistical models to
fit them to the electrical signals and analyze the spike trains.

These computational models, as mentioned before, can usually be derived from an electri-
cal circuit. While they may some differences that make them unique, they all tend to follow
the standard integrate-and-fire model. The change in membrane voltage can be derived as a
function of the input current (I(t)) to the postsynaptic neuron and the capacitance Cm, the
concentration of ions on either side of the cell membrane. The ions are integrated to find a
net drive for the membrane potential.

dVm
dt

=
I(t)

Cm

In some cases, models include a refractory period, a period for which the membrane po-
tential does not move for the duration of the period, so it can limit the frequency of spikes
from occurring. In the case of the random walk integrate-and-fire model, it also has the
same as the standard integrate-and-fire model. It differs in that, using a random walk6 to-
wards the spike threshold, the membrane potential can go up and down with equal strength.7

I begin by looking at theories about spike count correlation. A spike train analysis done

6A process which, at each time step, the process moves randomly
7Further detail will be described
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by R. Kass and V. Ventura (2006) revealed that spike count correlation between two si-
multaneously recorded neurons will often increase with time bins in recorded studies due to
trial-to-trial variation. Through a careful proof about the formula for spike count correla-
tion as a function of time bins and firing rate inputs, they were able to show the effects of
trial-to-trial variation and length of time bins on spike count correlation. These trial-to-trial
variation are often the results of ”noise” in the models. The noise can be considered as the
small fluctuations around the signals that the models generate. It is due to noise that there
are varied spike counts for each trial. Without noise or trial-to-trial variation, the spike
correlation becomes uncorrelated.

In addition, research by G. Vinci (2013) further revealed that the relationship between
neurons cannot be simply explained by spike count correlation. Even if there is high cor-
relation between firing input, the spike count correlation can still be close to zero. This is
called the “attenuation effect”. This is important as it causes a phenomenon called “reversal
problem” where the spike count correlation between two neurons will be greater when the
firing input rate is lower than when the firing input rate is higher.

In the Assessment of synchrony in multiple neural spike trains using loglinear point pro-
cess models, R. Kass, R. Kelly and W. Loh attempts to provide a statistical procedure to
analyze synchrony. Using experimental primary visual data for an anesthesized monkey,
they provided a quantifiable measure, ζ, that would be the proportional gain in synchrony
between two neurons’ spike trains when assuming that the expected gain is independent.8

The equation for the quantifiable measure can be seen as a function of the spiking history
H and the observed number of synchronized spike:

ζ̂H =
N∫

λ11(H
1
1 |t)λ21(H2

1 |t)dt
(1)

When ζH < 1, there is suppressed synchrony (less synchrony than expected from the
model) while ζH > 1 indicates excess synchrony. Finally, when ζH = 1, the synchrony is well
explained by the model.

3 Poisson Process

A stochastic point process is a mathematical representation of a random process that gen-
erates intervals between points according to a stochastic rule (i.e.probability distribution).
These points are discrete events that occur in a continuous time (e.g. action potential).
In neuroscience, the stochastic point process is used to represent spike trains and the time
between spikes is called inter-spike intervals (ISIs). Generally, the point process has memory
which means the probability that a spike or event occurs is affected by the past. In addition,
the interarrival times between the events can but do not necessarily have to be exponentially
distributed.

8Please refer to Kass, Kelly, & Loh (2011) for further and more complete explanation about the theory
to measure synchrony
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One important example of a point process is the Poisson point process. In the homogenous
case, the probability of an event occurring is independent of the time. For a homogenous
Poisson process with rate λ, the intervals between events are i.i.d. Exp(λ) and are memory-
less, the chance of having another draw is not dependent on the past draws.9 In addition,
the expected number of spike counts µ = λ ·∆t which means that the mean is proportional
to the length of the specified time interval.

4 Models

In order to examine the neural firing rate properties, it is important to understand the
parameters of the model themselves first. Here, I briefly describe the models proposed by
Shadlen and Newsome as well as the Leaky Integrate-and-Fire model that is more widely
studied and used to describe experimental data.

4.1 Random Walk Integrate-and-Fire model

We focus on a simplified integrate-and-fire model with decay introduced by Shadlen and
Newsome based on a random walk. Similar to a normal integrate and fire model, the neuron
fires when it reaches a spike threshold of -55 mV and will reset immediately back to its
resting potential of -70mV or one step (1 mV) below it. Unlike many other models, it is
important to note that the RW-IF model does not have a refractory period other than the
reset to the one step below the resting potential. There is an exponential decay with time
constant τ (20 ms).

Figure 2: For each neuron, we have a balanced network of inputs (neurons) that will be
integrated into the target neuron. These 600 presynaptic inputs will have ISIs drawn from
an exponential distribution to follow the Poisson Process

9Kass, Eden, Brown (2013) p. 664
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As seen in figure 2, we have a graphical representation of the inputs (surrounding neu-
rons that affect the target neuron) that will have either have one EPSP/IPSP affect the
target neuron. Each excitatory (orange circles) or inhibitory input (green circles) will incre-
ment/decrement by one step respectively towards the firing threshold for the target neuron.
In addition, each input has an ISI drawn from an exponential distribution (refer to raster
plot in Figure 3a) which follows the Poisson process. We enforce a bound in which the in-
hibitory input cannot hyperpolarize the neuron beyond the resting potential. It is important
to note that we have a balanced network of excitatory and inhibitory (300 input neurons
each) synaptic inputs to a neuron. With balanced inputs, the firing of spikes is caused by
the irregular fluctuations. The balance of excitatory and inhibitory inputs along with the
reflecting barrier creates the irregular spike patterns of those from experimental data.

(a) Raster plot of spike arrival times
drawn from an exponential distribution

(b) Raster plot of spikes occuring with
imposed oscillatory input

Figure 3: In a raster plot, each row is a trial and a point indicates an event happening - an
input drawn.

4.2 Leaky Integrate-and-Fire model

The leaky integrate-and-fire model is one of the most widely used and studied models due to
its simple spiking neuron model. A neuron can be modeled from a simple linear differential
equation:

τm
dv

dt
= −

(
v(t)− EL

)
+RI(t)

where τm is the membrane time constant, R is the membrane resistance, EL the resting
potential, v(t) the membrane voltage potential as a function of time t, and I(t) the input
current. As a ”leaky integrator” of its input I(t), it can capture the spiking effects of the
sodium and leakage channels as well as the voltage decay. Although the spiking property
of resetting are not seen in the experimental neural data, the LIF model has similar effects
where the membrane potential will ”reset” to the resting potential once it reaches the spike
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threshold. We can also add a refractory period where the leaky integration process will
restart after some duration of the absolute refractory period delay. 10

5 Spike Count Correlation

5.1 Derivation

As stated in the introduction, I am interested in using simulations to illustrate the rela-
tionship between spike count correlations with firing rate inputs and time bins. Using the
following two simple assumptions introduced from Kass and Ventura (2006), Vinci derived
a general equation for correlation of two spike counts Y 1

r ,Y 2
r that is dependent on time bins

T, trial-to-trial firing rate correlation ρ, conditional expectation and variance of spike counts
on the input firing rate X1

r ,X2
r for simulation trial r.11:

1. Within trials, the expected spike counts increase proportionally to T

2. The within-trial variance is proportional to the within-trial expectation

Since we are working with Poisson process, we can assume that the fano factor k = 1.
We first start with the conditional expectation and conditional variance:

E[Y i
r |Xr] = TE[X i

r] (2)

Var[Y i
r |X i

r] = k · E[Y i
r |X i

r] = kTE[X i
r] (3)

From these definitions of conditional expectation and variance, we can then derive the vari-
ance and covariance:

Var[Y i
r ] = E[Var[Y i

r |X i
r]] + Var[E[Y i

r |X i
r]]

= kTE[X i
r] + T 2Var[X i

r]

= T 2(
k

T
E[X i

r] + Var[X i
r])

Cov[Y 1
r , Y

2
r ] = E[Cov[Y 1

r , Y
2
r |X1

r , X
2
r ]] + Cov[E[Y 1

r |X1
r ],E[Y 2

r |X2
r ]]

= 0 + Cov[E[Y 1
r |X1

r ],E[Y 2
r |X2

r ]]

= T 2Cov[X1
r , X

2
r ]

Finally, we have the general correlation equation to be:

Cor(Y 1
r , Y

2
r ) =

Cov[Y 1
r , Y

2
r ]√

Var[Y 1
r ]Var[Y 2

r ]

=
T 2Cov[X1

r , X
2
r ]√

T 2( k
T

E[X1
r ] + Var[X1

r ]) T 2( k
T

E[X2
r ] + Var[X2

r ])

=
ρT√

(T + ω1)(T + ω2)

10Trappenberg (2010) p. 54
11Kass and Ventura (2006)
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where:

• ρ = Cor(X1, X2)

• ωi = E[Xi
r]

Var[Xi
r]

From the correlation equation, I expect that the correlation with spike counts will increase
with input firing inputs. In addition, I believe that the correlation of spike counts will increase
with time bins and rho.

5.2 Test of Assumptions

As stated from the derivation of the spike count correlation, the spike count correlation
formula is based on two assumptions. In papers from Shadlen & Newsome (2006) and
Averbeck & Lee (2003), observed data from Macaque monkeys and many other studies have
shown that variance of spike counts is proportional to the expected spike count. In addition,
as time bins increases, the expected spike counts increase. To test this, I randomly drew 300
time bins and simulated 100 trials per time bin. For each time bin, I calculated the mean
spike counts and plotted against the time bin inputs. As seen below, the expected spike
counts increase with time bins.

Figure 4: Expected spike count against time bins
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In order to show this, I randomly simulated firing rates from 20 to 60 (spikes/second)
and repeated for 100 trials. As seen below, the variance of the spike counts increase as firing
rates increase which is consistent with Assumption 2.

Figure 5: Variance against expected firing rate
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5.3 Input Firing Rate Equals Output Firing Rate

One important assumption in the simulation is that the firing rate of the inputs will result in
the same firing rate from the target neuron. In the simulation, I will increase the expected
firing rate of the inputs (E[X i

r]) and we expect that the spike count correlation to change
as well. However, I needed to check whether there were any additional effect on the output
firing rate as I changed the input firing rate. As seen in Figure 6, we see that the output
firing rate increases linearly with the input firing rate.

Figure 6: Input firing rate for surrounding neurons in the RW-IF model result in the firing
rate for the target neuron
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5.4 Fano Factor of Spike Counts is One for Poisson Counts

Another important assumption in the correlation proof is that the fano factor of the spike
counts given the input firing rates is one for Poisson counts. The fano factor (k in the
correlation proof) is a measure of variation. In the general case, the fano factor is the
variance over the mean:

F =
σ2

µ
(4)

In Poisson process, the fano factor would be one as the variance will linearly increase with
the mean spike counts. This can be seen in the graph below.

Figure 7: We see a plot of the fano factor. We see that the mean spike counts increases
linearly with the variance of the spike counts. For poisson process, the variance in the spike
counts will equal roughly to the mean in the spike counts

6 Simulation setup

6.1 Spike Count Analysis

In order to observe how spike count correlations between two neurons change given indepen-
dent and correlated firing inputs, I ran four simulations. The first three simulations work
with independent firing inputs and the fourth with correlated inputs. Each firing input (µ)

14
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ranges from 20-80 impulses/sec by steps of five. For each run in the simulation, I set up
100 independent trials where each trial generates spike count outputs from two independent
neurons and found the correlation between the two neurons spike counts. Each neuron is
given a firing input rate that is determined as follows:

1. Constant Input

2. Inputs drawn from independent normal distribution: λ ∼ N (µ, 2)

3. Inputs drawn from independent multiplicative distribution: λ ∼ µ·exp(α), α = N (0, 2)

4. Inputs drawn from bivariate normal distribution: λ ∼ N (µ,
∑

), µ =

(
µ1

µ2

)
,
∑

=(
4 4ρ
4ρ 4

)
For each firing rate, I ran the 100 independent trials 100 times to find an average cor-

relation. I then plotted the average correlation against the firing input rate. It should be
noted that the input firing rate variation are held constant for all cases (Var[X i

r]). For future
work, it will be interesting to explore varying the input firing rate variation and increasing
the proportion of ω.

6.2 Synchrony Analysis

I also conducted simulations to study synchrony by introducing an oscillatory drive to the
inhibitory inputs. Since I am interested in whether the oscillatory input affects the syn-
chrony between neurons, I will look at the proportion of observed synchronous spikes over
the total number of spikes from both neurons. I would expect that the proportion of syn-
chronous spikes when the model has oscillation will be greater than the model without. I
ran 100 independent trials for a certain amplitude (20 - 40). For each neuron, the excitatory
inputs and a percentage of the inhibitory inputs are independent. The independent inputs
have firing rate (µ) set to 40 spikes per second. The remaining percentage of the neuron’s
inhibitory inputs will share oscillatory input with the other neuron. To include an oscillatory
input, I generated a cosine-tuning curves over 3000 ms with a base of 10 mV to avoid going
below the resting potential:

A · cos(2πft+ φ) + 10 (5)

The frequency (f) was always set to 40 Hz. The starting phase value for both neurons (φ)
was drawn from an uniform distribution [-π, π] and it is redrawn for every trial. I apply the
thinning algorithm to reject the spike events that were unlikely to occur given the oscillatory
input. The thinning algorithm is an acceptance-rejection procedure in which we selectively
take spikes in accordance to an oscillating input. The key idea is to choose a constant
rate function λu(t) = λu for which we can generate a nonhomogenous Poisson process. In
our case, this is our input firing rate. The acceptance-rejection algorithm for the thinning
procedure will as follows:
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1. Generate a sinusoidal wave

2. Draw inputs from an exponential distribution given time t

3. Generate uniform distribution (u1) independent of exponential distribution

4. Accept λ(t)/λu/ greater than u1

From figure 4b’s raster plot, we can see the inputs have been drawn accordingly to oscil-
lating input. Once I have generated 100 independent trials, I implemented Pengcheng Zhou’s
code to compute ζ, the measure of synchrony fit.12. I then ran the same simulation again
but this time gave the shared inhibitory inputs constant inputs with rate (10 + amplitude)
spikes/second (10 from the addition of a base in the cosine wave). I made sure that the
percentage of shared inhibitory inputs that have constant, but slightly increased rate, in
order to be able to compare to the model with oscillatory drive.

7 Results

After verifying the assumptions are met for the spike count correlation, we can now execute
the simulations described previously. The results can be broken into two sections: spike
count correlations and synchrony.

7.1 Spike Count Correlation relationships

From figure 9, we see that the spike count correlation seems to be independent of input firing
rate when the input is constant among trials. Specifically, as input firing rate increases, the
spike count correlations tends to approach a correlation of 0. This holds with results found
by R. Kass and V. Ventura as there needs to be trial-to-trial variation. This also follows
Giuseppe’s proposal in which there could be an “attenuation effect” when the correlation
between firing rate inputs is one but there is zero correlation between the spike counts. This
is due to the variability of the spike counts between trials to be close to zero.

12The formula for ζ can be found in the background section
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Figure 8: Constant input with no trial-to-trial variation

When trial-to-trial variation is introduced when the firing inputs are drawn from the
normal and multivariate distribution, we observe a negative association between spike count
correlation and firing inputs. This again follows the correlation proof as we increase the
firing rate input (E[X i

r]) and keeping the time bins, firing input rate correlation and variance
constant. It should be noted that the time bins was set to 3000 ms, sigma to

√
4, and rho

as 1 (same inputs for both neurons) in all 3 of the simulations. In addition, if we were to
increase the time bins (T) while keeping the rest of the variables constant, we observe an
increase in spike count correlation which follows expectations.

17
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(a) Firing rate inputs drawn from a
normal with constant time bins (3000
ms) and variance(2)

(b) Firing rate inputs drawn from a
multivariate distribution with constant
time bins (3000 ms) and variance
(exp(4))

Figure 9: Simulations of the two independent simulations follow the derived correlation
equation. Left: Firing input rate drawn from a normal with constant variance of 2. Right:
Firing input rate drawn from a multivariate normal with constant variance of 2

Figure 10: Spike count correlation as a function of increasing time bis with constant firing
input rate and variance
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From figure 12 below, when I correlated the inputs between neuron 1 and neuron 2,
we see that the spike count correlation increases with rho as expected from the correlation
equation. From Giuseppe’s paper, he observed that the SSCC is always less than FRC (rho).
In the case of the RW-IF model, this was also observed as well. From figure 12b, we see
that the correlation between firing inputs is always greater than the spike count correlation.
In addition, when we increase the expected firing input rate, the spike count correlation
decreases. It should be noted that while most literature indicates that the spike correlation
increases with firing input rate, they are increasing the net firing input to the neuron. In my
simulation, I increased the expected firing input rate to each presynaptic inputs and kept
the variance constant. For future work, it will be interesting to increase the proportion of
expected and variance firing rate input (ω), i.e. not keeping the input rate variance fixed.
We would then expect the spike count correlation to increase with firing input.

(a) Firing rate input vs spike count correlation
with rho and time bins held constant

(b) Correlated inputs (p) vs spike count correla-
tion with firing rate and time bins held constant

Figure 11: Simulation with correlated inputs. Using inputs drawn from a bivariate normal,
we can increase the correlation between firing rate inputs. As the correlation between the
firing inputs increase, the correlation between spike counts also increase as well

19
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7.2 Synchronous neural activity

I then moved on to observe how introducing an oscillatory drive affects synchrony. After
implementing a shared oscillatory input for the inhibitory inputs, I used Pengcheng Zhou’s
code for analyzing synchrony to see the effects. When 40% of the inhibitory inputs (120
inputs) had shared oscillatory input and given amplitude of 30, the observed number of
synchronized spikes can be seen:

################# synchony resolution: 0.006 ################

Observed number of synchonized spikes: 312.000

Predicted number with PSTH+HISTORY model: 543.0000

zeta: 0.5746

The average total number of spikes for all 100 trials for neuron 1 was 518 and neuron 2
was 520. We would then have a proportion of 312

1038
= 0.3006. When we have implemented the

simulation but have a percentage of shared inhibitory inputs to have constant input (the base
membrane potential of 10 + amplitude of 30 = 40), the observed number of synchronized
spikes can be seen:

################# synchony resolution: 0.006 ################

Observed number of synchonized spikes: 53.000

Predicted number with PSTH+HISTORY model: 49.0000

zeta: 1.0816

The average total number of spikes for all 100 trials for neuron 1 was 156 and neuron
2 was 158. We would then have a proportion of 53

314
= 0.1688. From these results as

well as many others, we see that the proportion of the synchronous spikes is greater with
oscillations than when there is no oscillation in the model. We have similar cases when we
changed the amplitude of the cosine wave. This shows that an oscillatory input drive will
increase synchrony among neurons.

8 Discussion

We have shown that the RW-IF model, while a simple model, can be implemented as a model
for experimental data. From the simulation results, the RW-IF follows results expected from
studies. For a balanced random walk integrate and fire model, the spike count correla-
tion increases with time bins. However, when there are no trial-to-trial variability, there
will be no correlation between spike counts as firing input rates increases. When we impose
correlation among the firing rate inputs, we see that spike count correlation increases as well.

As suggested by Vinci (2013), the input firing rate correlation was greater than the spike
count correlation. This could lead to a behavior in which he calls “attenuation effect”. An
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extreme case of the “attenuation effect” is when the firing input correlation is one and the
spike count correlation to be zero. When I increased the firing input rate and kept the
variance constant, we only increased ω slightly so we do not see this case clearly when we
correlated the inputs. However, if I were to increase ω by a large amount, I would be in-
creasing the denominator of the spike count formula. At a certain stimulus, the input firing
rate correlation would not effect the spike count correlation. This would lead to the problem
called “reversal effect” where the spike count correlation does not increase with firing input.
Instead, it will decrease as firing input increases.

While the RW-IF model is a simple model and concept, there are certain limitations for
which the model excludes. As discussed by Shadlen and Newsome, many of the biophysical
properties of an actual neuron have been ignored. The excitatory and inhibitory synaptic
events count the same and therefore I do not consider any inputs that have no effect on
the postsynaptic neuron. Another important aspect is that a refractory period is not imple-
mented other than a one step below the resting potential when the membrane potential fires.

At first, I explored the effect of magnitude on synchrony when both excitatory and in-
hibitory had shared oscillatory inputs. However, there was no indication that there was
excess synchrony when we introduced the oscillation. In fact, Shadlen and Newsome (1998)
had also explored briefly the effect of shared constant inputs on synchrony. They found that
there was no increase in synchrony when there were shared inputs. They attributed to the
fact that this was a “high-input” regime13 (where we have 300 excitatory and inhibitory in-
puts) where the abundance of inputs were effectively synchronous. However, in a later study
by Salinas and Sejnowski (2000), they claimed that it was due to the correlation parame-
ters that Shadlen and Newsome had set for the excitatory/inhibitory inputs that resulted
in no increase in synchrony. They hypothesized that the fact that the correlation between
excitatory and inhibitory were the same resulted in reduced variance. Therefore, from the
literature and the results, we can see that the magnitude of the oscillatory drive as well as
the parameters such correlation between excitatory/inhibitory inputs are very important in
determining the output firing rate.

In the future, I hope to move forward with the simulations for synchrony. In particular, I
hope to explore how correlated inputs for just excitatory or just inhibitory inputs affect the
synchrony of firing across pairs of neurons. I will explore how the synchrony changes with
the length of time observed as well as with firing rate input variation. Another interesting
exploration would be to look at how shared inputs affect the synchrony of spikes. Since this
was a process of learning the area of neural computation and spike train analysis, I was not
able to fully apply all the model analysis and further work could be addressed in detail.

13In common situations, neurons only receive less than 100 inputs
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