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Abstract

Rapid processing of scenes has been shown to be facilitated by the processing of low 

spatial frequency (LSF) components before that of high spatial frequency (HSF) 

components. It has been been proposed that magnocellular pathways carrying low 

spatial frequencies provide an initial ‘gist’ of a scene, which is filled in using higher 

spatial frequencies along the the ventral stream. This study seeks to determine how 

performance on a six-way scene categorization task varies as a function of spatial 

frequency and image presentation duration. Across six categories of scenes, a low-high 

continuum of spatial frequencies, and a short 50ms presentation duration and longer 

100ms one, we measured subjects reaction times and accuracies in categorizing 

scenes. Accuracy was equivalent for HSF-filtered scenes and LSF-filtered and this was 

true for the shorter and longer duration conditions. However, accuracy was significantly 

better for HSF-filtered images of forests at 100ms versus at 50ms presentation. Taken 

together, these results suggest that in addition to LSF information, HSF components of 

scenes may also facilitate rapid scene processing for some types of scenes.  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Introduction

Humans are able to rapidly perceive and recognize visual scenes in roughly the same 

amount of time as it takes to recognize an object such as a car, face, or dog (Olivia, 

2013). Potter and Levy’s early behavioral experiments revealed that humans are able to 

understand, remember, and describe complex real-world images after seeing them only 

for 100ms (Potter & Levy 1969). Thorpe et al.’s ERP study revealed that visual 

processing of objects within complex real-world images can be performed in under 

150ms (Thorpe et al. 1996). Olivia and Schyns’ foundational visual psychophysics study 

on rapid scene processing showed that humans can recognize complex visual scenes in 

125ms (Oliva & Schyns 1994).

The speed of processing shown by these studies is surprising, considering that visual 

scenes are complex and often contain many objects with varying degrees of contextual 

association. Hence, mental representations of scenes are likely significantly different 

from those of individual objects. Recent studies employing transcranial magnetic 

stimulation (TMS) have shown that, at least within the ventral visual stream, the neural 

mechanisms mediating object and scene processing may be functionally dissociable 

(Ganaden et al. 2013, Mullin & Steeves 2011). 

The geometries of scenes, and in particular their global spatial information, are thought 

to play an important role in rapid scene processing (Bar et al. 2006, Oliva & Torralba 

2006). Olivia & Torralba (2001) demonstrated with a computational model that a low 

dimensional representation of a scene image, termed the ‘spatial envelope,’ can 

sufficiently convey enough information to categorize scenes semantically, like humans 
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do. The spatial envelope, described by visual parameters such as naturalness, 

openness, and closeness, is a holistic representation of scenes that is not defined by the 

information conveyed by individual objects within it. Rather, these visual parameters are 

correlated well with the second-order statistics (energy spectra) of scene images as well 

as the spatial arrangement of structures in the scene (spectrogram) (Oliva & Torralba 

2001). 

Different ranges of spatial frequencies have been shown to mediate specialized 

mechanisms in visual recognition of objects, scenes, faces, and words (Peyrin et al. 

2006, Bar et al. 2006, Vuilleumier et al. 2003, Woodhead et al. 2011). In the domain of 

object recognition, Bar et al. and others have posited that a top-down mechanism — 

namely a rapid projection from early visual cortex to the OFC and then to the ventral 

visual stream — facilitates the extraction of an initial ‘gist’ from the scene conveyed by 

low spatial frequencies (Bar et al. 2006, Kveraga et al. 2007).

The low spatial frequency components of scenes have been shown to be sufficient for 

rapid scene processing. Olivia & Schyns foundational study on rapid scene processing 

employed an image matching task with low, high and LF-HF hybrid scene images. They 

found that the processing of LSF occurs in advance of that of HSF, and is sufficient for 

recognition (Oliva & Schyns 1994). It has been posited that the low spatial frequencies of 

scenes are transmitted rapidly by a magnocellular pathway, mediating a coarse 

estimation or gist (Kveraga et al. 2007). This LSF-based gist is proposed to be 

subsequently used as a template for further processing via analysis of high spatial 

frequencies in the ventral visual pathway (Bar & Aminoff, 2003; Bullier, 2001; Hegdé, 

2008; Kauffmann et al., 2014; Schyns & Oliva, 1994). This LSF-sensitive top-down 
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mechanism has been proposed to facilitate the rapidity of visual processing in general 

(Bar et al 2006, Bar 2007).

The current visual psychophysics experiment investigates how performance on a rapid 

six-way scene categorization task varies as a function of spatial frequency and 

presentation duration. We hypothesized that LSF components should be processed prior 

to HSF components of scenes, as Bar et al. (2006) found. Hence, we predicted that 

when the scenes were presented for the very brief 50ms duration, there would be 

facilitated performance for the LSF scenes, but not the HSF ones, and that there would 

an inverse linear relationship between SF and performance. We also predicted that at 

the longer 100ms duration, this facilitation would disappear, such that performance 

would be equivalent across the SF conditions.
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Methods

Participants

Twenty-eight right-handed participants (8 males, 20 females, 20 ± 2 years) with normal 

or corrected-to-normal vision were included in this experiment. All participants were all 

undergraduate students at Carnegie Mellon University and native English speakers. 

Participants gave informed written consent before participating in the study, which was 

approved by the IRB at Carnegie Mellon University. 

Stimuli

Scene stimuli were taken from multiple sources including from the image database from 

Park, Konkle, & Oliva (2014), from those used in Kravitz, Peng, & Baker (2011), and 

from freely licensed images found using Google image search (those labeled “for reuse 

with modification”). The six scene categories — bedrooms, churches, mountains, 

skylines, streams, & woods —  were chosen in order to span the space of possible 

spatial frequencies inherent to the scene types and to represent variation in the ‘spatial 

envelope’ as widely as possible (Oliva & Torralba 2001). Hence, the scene categories 

chosen were half manmade and half natural, and within these divisions, some close and 

some far, and some closed and open, as Kravitz, Peng, & Baker chose to do. Exemplars 

from each of the six categories were included in the experiment, for a total of 120 

individual scene exemplars. Bedrooms, churches, and skylines constituted the 

categories within the ‘manmade’ parameter, whereas mountains, streams, and forests 

constituted the ‘natural’ parameter. Bedrooms, streams, and forests made up the ‘near’  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Figure 1a: One exemplar from each category of scene is shown in all four spatial 

frequency conditions, from low to high (1 to 4).
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parameter and churches, skylines, and mountains made up the ‘far’ parameter. 

Bedrooms, churches, and forests made up the ‘closed’ parameter and mountains, 

skylines, and streams made up the ‘open’ parameter (see figure 1a).

Using Photoshop CC, all exemplar images were converted to grayscale by changing the 

image mode from ‘RGB’ to ‘Grayscale’. Then, all images were resized or cropped to 

500px by 500px. Each of the 120 exemplar images was filtered to include primarily low 

spatial frequencies by running the images through the ‘Gaussian Blur’ filter using a pixel 

radius of 8.5. This set of 120 filtered images constituted the group ‘SF 1’, with the 

highest proportion of low spatial frequencies, and the lowest proportion of high spatial 

frequencies. To produce the group ‘SF 2’ — images with more high spatial frequencies 

than images in ‘SF 1,’ but still predominately low spatial frequencies — the original 

unfiltered exemplar images were run through the ‘Gaussian Blur’ filter using a pixel 

radius of 6.1. Next, each of the original unfiltered images was filtered to include primarily 

high spatial frequencies by running the images through the ‘High Pass’ filter with a pixel 

radius of 1.4. This set of images constituted the group ‘SF 3,’ with the second highest 

amount of high spatial frequencies, and few low spatial frequencies. To produce the 

group ‘SF 4’ — images with highest amount of high spatial frequencies among the four 

SF conditions, and few low spatial frequencies — the original unfiltered exemplar images 

were run through the ‘High Pass’ filter with a pixel radius of .8. Overall, 480 image files 

were produced, comprising the original 120 exemplar images within each of the 4 SF 

filtered groups. Groups SF 1, SF 2, SF 3, & SF 4 represent a continuum from mostly low 

spatial frequencies to mostly high spatial frequencies although at every level of spatial 

frequency, there are both high and low spatial frequencies present, albeit with differential 

weighting (see figure 1b). 
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Figure 1b: An exemplar from the category ‘Bedrooms’ is depicted in all four 

spatial frequency conditions.
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Figure 2: A single trial broken down to show the order and presentation duration of fixation, 

stimulus, and inter-trial buffer, as well as the time limit for subjects’ response.
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Experimental Design

The stimuli were presented to participants on a square LCD monitor connected via HDMI to a 

Macbook Pro running PsychToolBox in MATLAB. Using a setup with an external monitor was 

necessary in order to control precisely the duration that each stimulus was presented for (50ms 

or 100ms ± 6ms due to lag). The experiment was written in PsychToolBox for MATLAB, and 

additional Python and MATLAB scripts were used to generate individual trial orders for each 

subject and parse data output. 

The experimental procedure was broken down into three practice blocks followed by two 

experimental blocks, with breaks in between each. Each trial consisted of a fixation cross 

presented for 500ms, then the image presented on a white background for either 50ms or 

100ms, a response window capped at 2000ms, and then a post-image white screen for 500ms 

(see figure 2).

The first practice block consisted of 50 trials, in which filtered and unfiltered scene images were 

presented for 100ms, none of which were repeated in the following blocks. In the second 

practice block, a first set of 120 stimuli, randomized according to their category, exemplar and 

SF, were presented for 50ms each. In the third and final practice block, these same 120 stimuli 

were presented again, but their order was randomly permutated, and they were presented for 

100ms each. Each of the two experimental blocks also consisted of 120 trials. In the first 

experimental block, a second set of 120 stimuli were presented for 50ms each. In the second 

experimental block, this second set was presented again for 100ms each with their order 

randomly permutated. Overall, therefore, subject 1 saw 240 of the total 480 images and subject 

2 saw the remaining 240 images. Subject 3 saw 240 of a new set of 480 images, re-randomized 

according to category, exemplar and SF, and subject 4 saw the remaining 240 images of this 

new set. 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Procedure

Participants were asked to categorize the images presented to them as belonging to one of six 

possible scene categories using keys number 1-6 on the keyboard. Category 1 — ‘Bedrooms’ 

— corresponded to key 1, category 2 — ‘Churches’ — corresponded to key 2, category 3 — 

‘Mountains’ — corresponded to key 3, category 4 —  ‘Skylines’ — corresponded to key 4, 

category 5 — ‘Streams’ — corresponded to key 5, and category 6 — ‘Woods’ — corresponded 

to key 6. Participants were shown these category–response associations on-screen and asked 

to memorize them at the beginning of the experiment. They were also able to practice 

categorizing the scenes during the practice block. During the four experimental blocks, if the 

participant took longer than 2 seconds to respond or pressed a key outside of the range of 

possible responses, they were prompted with feedback on-screen about their error. No other 

feedback was given post-trial regarding the correctness of their response. Response time and 

accuracy were recorded for each trial. The program also recorded the actual amount of time 

each image was presented as a measure of possible lag caused by the hardware/software. The 

experiment took most participants approximately 20 minutes to complete. 

Results

In order to explore differences in performance across the four spatial frequency 

conditions, the six categories, and the two duration conditions, two repeated measures 

ANOVAs were performed separately for percent correct and RT means on just the 

second half of trials (trials 240-480). 
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The final analysis was performed just on the second half of trials because initial analyses 

revealed that performance was worse overall in the first half of trials (accuracy = 80%, 

RT = 833ms) than in the second (accuracy = 86.5%, RT = 768ms). Some subjects also 

reported difficulty learning the key-category associations, even after practice. Hence, 

there may have been unforeseen deleterious effects of performance on the first 120 

trials, in which images were presented for 50ms, which could potentially bias the 

analysis of duration effects and cause the observed decrease in overall performance on 

the first half of trials. In the second half of trials, subjects have equivalent practice at both 

durations —  50ms and 100ms —  which is crucial as rapid scene processing is the 

primary object of investigation, not training or response related effects. 

Prior to the analyses of variance, each subject’s performance was analyzed individually 

and those whose mean RT over all trials exceeded the mean + two standard deviations 

for all subjects were removed from further analyses. These criteria for removal were also 

applied to  subjects’ mean accuracy. Eight subjects of a total of thirty-six were removed, 

leaving twenty-eight whose data were used in the following analyses. 

The first analysis, a 6 x 4 x 2 repeated measures ANOVA, examined mean RT for just 

those trials that subjects answered correctly on, on just the second half of trials in the 

experiment. There was a significant main effect of category (F(1, 5)= 8.328, p < 0.001) 

and a significant main effect of SF (F(1,3) = 5.690, p = .004). There were neither 

significant two-way interactions between the factors, nor a significant three-way 

interaction between category, SF, and duration (see figures 3a & 3b). 
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Figure 3a: The significant main effect of SF for the RT ANOVA is shown here,

with fastest RT for SF 3 and slowest RT for SF 1.

Figure 3b: The significant main effect of category for the RT ANOVA is shown 

here, with fastest RT for category 1, bedrooms, and slowest RT for category 5, 

streams. 

Mean RT by SF�

Mean RT by Category�
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The second ANOVA examined accuracy on just the second half of trials in the experiment. 

Accuracy, rather than RT, was chosen as the metric of performance based on the difficulty of 

the categorization and because it is a commonly used metric in perceptual tasks (Santee & 

Egeth 1982). There was a significant main effect of category (F(1, 5) = 10.471, p < .001) and 

of SF (F(1,3) = 12.307, p < .001) and of duration (F(1,1) = 12.074, p = .002) (see figures 4a, 

4b, & 4c). 

Figure 4a: Mean accuracy for the four SF conditions, where chance = 17%.

Mean Accuracy by SF�
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Figure 4b: Mean accuracy for the six categories, where chance = 17%.

Figure 4c: Mean accuracy for the two duration conditions, where chance = 17%. 

Mean Accuracy by Duration�
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There was a significant two-way interaction between category and SF (F(1,15) = 8.136, 

p < .001). There was a marginally significant two-way interaction between category and 

duration (F(1,5) = 2.172, p = .061). The two-way interaction between SF and duration did 

not reach significance. There was also a significant three-way interaction between 

category, SF, and duration (F(1,15) = 1.891, p < .023) (see figures 4d, 4e, & 4f).
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Figure 4d: Mean accuracy for six categories and two durations, where chance = 17%. 

Note that the two-way interaction for category and duration was only marginally 

significant. 

Figure 4e: Mean accuracy for six categories and four SF, where chance = 17%

Mean Accuracy by Category * Duration�

Mean Accuracy by Category * SF�
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Figure 4f: Mean accuracy for the six categories, four SF, and two durations, where 

chance = 17%. Single asterisks indicate a significant difference as defined by the Tukey’s 

value of .310 at an alpha of .05, and double asterisks indicate marginal significance. 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A Tukey’s Post Hoc test was performed on pairwise comparisons from the significant three-way 

interaction between category, SF, and duration in the accuracy ANOVA. This test yielded a 

Tukey’s value of .310 at an alpha of .05, revealing that at 50ms, mean accuracies for SF 1 and 

SF 4 forests were significantly different from one another, as were SF 1 and SF 3 forests, and 

the difference between SF 2 and SF 3 forests was marginally significant (.305 < .310). At 

100ms, mean accuracies for SF 1 and SF 4 forests were significantly different, as were SF 1 

and SF 3 forests. At both 50ms and 100ms, mean accuracies for SF 1 forests and SF 1 

bedrooms were significantly different, as were SF 1 forests and SF 1 skylines (see figure 4f). 

Taken together, these post-hoc tests reveal that differences within the scene category of forests, 

particularly LSF-filtered forests, largely contribute to the significant three-way interaction for 

accuracy. 

In order to find the source of this the three-way interaction, additional analyses of variance were 

performed. Separate 4 x 2 repeated measures ANOVA, in which SF and duration were the 

factors were conducted on mean accuracy at each of the four SF conditions and the two 

durations for each of the categories individually. For churches and skylines, there were no 

significant main effect or interactions between the factors. For bedrooms, there was just a 

significant main effect of duration (F(1, 1) = 4.783, p = .038). For mountains, there was was a 

significant main effect of SF (F(1, 3) = 6.406, p .001) and a significant interaction between SF 

and duration (F(1, 3) = 4.559, p = .005). For streams, there were significant main effects of SF 

(F(1, 3) = 5.596, p = .002) and of duration (F(1, 1) = 5.915, p = .023), but no significant 

interaction. For forests, there were significant main effects of SF (F(1, 3) = 34.183, p < 0.001) 

and of duration (F(1, 1) = 7.805, p = 0.009), as well as a significant two-way interaction between 

SF and duration (F(1, 3) = 3.605, p = .017).  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One last analysis, a 2 x 4 x 2 repeated measures ANOVA, was performed to look at differences 

between the natural and manmade categories — which were defined a priori — the four SF, and 

the two durations. There was a significant main effect of manmade/natural (F(1, 1) = 45.720, p < 

.001). There was a significant two-way interaction between manmade/natural and SF (F(1, 3) = 

24.628, p < .001) and a marginally significant interaction between manmade/natural and 

duration (F(1, 1) = 3.505, p = .076) (see figures 5a, 5b, & 5c).

Figure 5a: Mean accuracy for the manmade (bedrooms, churches, skylines) versus 

natural (mountains, streams, forests) categories. Chance = 17%.

Mean Accuracy by Manmade/Natural Category�
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Figure 5b: Mean accuracy for the manmade and natural categories at each duration.

Note that the two-way interaction is only marginally significant. Chance = 17%.

Figure 5c: Mean accuracy for the manmade and natural categories at each SF. The two-

way interaction is significant. Chance = 17%.
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Discussion

This visual psychophysics experiment sought to assess the role of spatial frequency in rapid 

scene processing. In a difficult six-way scene categorization task, we examined the effect of 

LSF and HSF filtering on subjects’ performance at a very short presentation duration (50ms) 

and a slightly longer one (100ms). Performance was measured as reaction time and accuracy. 

Prior to the task, subjects were trained extensively on both intact and SF-filtered images of 

scenes from six categories, which were selected to span a large range of spatial frequencies 

inherent to these scene types and to represent variation in the holistic ‘spatial envelope’ (Oliva & 

Torralba 2001). Therefore, our scene stimuli were selected and parameterized to include 

categories that were natural and manmade, close and far, and closed and open, as Kravitz, 

Peng, and Baker (2011) did. 

We predicted that at the shorter 50ms presentation duration, there would an inverse linear 

relationship between subjects’ performance and SF, such that across the four SF conditions, 

LSF scenes would elicit the best performance and HSF scenes the worst. At the longer duration, 

we predicted that the facilitation in performance for LSF scenes would disappear, such that 

performance would be equivalent across the four SF conditions. These predictions were based 

on a number of studies that have shown that an LSF-sensitive top-down mechanism facilitates 

performance in rapid visual recognition, and in particular, that LSF are sufficient for rapid scene 

processing. Our prediction of facilitated performance for LSF over HSF scenes at the fast but 

not slower duration was also based on the results of Bar et al. (2006) that showed that LSF 
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components are processed in advance of HSF components of scenes during rapid scene 

recognition. 

We found that there were no significant two-way or three-way interactions between category, 

SF, and duration for RT, which motivated us to take accuracy as our primary measure of 

subjects’ performance. The first main finding in this study was that there was not a significant 

interaction between SF and duration for accuracy across all six categories. That is, performance 

facilitated by the presence of a larger proportion of low or high spatial frequencies in the scenes 

did not differ as a function of the duration that the images were displayed for. There are a 

number of methodological reasons why this could be the case. It is possible that 50ms was an 

adequately short image presentation duration to assess rapid scene processing, but that 100ms 

was not adequately long, and that at 100ms scene processing was subserved by the same 

underlying mechanisms as at 50ms. In fact, our finding of a significant main effect of duration for 

accuracy across the categories, revealing better performance overall at 100ms than 50ms 

durations, indicates that that 100ms may have actually represented a sweet spot for rapid scene 

processing. However, we can not make any direct conclusions about how the SF components of 

the scenes contributed to this difference. In future experiments, it will be beneficial to introduce 

longer durations, such as 500ms, in order to dissociate between effects arising from SF-

sensitive mechanisms subserving rapid scene processing and those from other non-rapid 

processing. 

Taken together with the finding of a main effect of category, the finding of a significant three-way 

interaction between category, SF, and duration for accuracy suggests that within certain scene 
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types, there may be performance facilitated by a combination of SF and duration related factors.  

The Tukey’s post-hoc test revealed that forests in particular demonstrated such an effect, such 

that subjects were most accurate for forests with a higher proportion of high spatial frequencies, 

and least accurate for forests with higher proportion of low spatial frequencies. This effect was 

present at both the 50ms and 100ms durations, further supporting the need for future 

investigations which use longer presentation durations. The post-hoc tests also showed that, at 

both durations, performance for the lowest SF filtered forests was significantly worse than that 

for the lowest SF filtered bedrooms, and worse than that for the lowest SF filtered mountains. 

The source of this effect is unknown, but it may have been that LSF forests were just particularly 

difficult for subjects to categorize in general. Indeed, forests showed the lowest accuracies of all 

the categories, as was revealed by the significant main effect of category. Furthermore, LSF 

filtered scenes showed the lowest accuracy and highest RT across all categories. Therefore, it 

may be that at the durations used in this study, LSF filtered scenes elicit poorer performance in 

general than HSF filtered scenes.

The significant main effect of category and category- and duration- specific differences in 

performance may be explained in part by the results of our last analyses, which separate the 

categories into manmade and natural scenes, in line with our a priori assumptions based on 

Kravitz, Peng & Baker (2011). Here, there is a main effect of natural/manmade such that 

performance is significantly better overall for manmade than natural scene categories. Although 

the two-way interaction between manmade/natural and duration is only marginally significant, 

we can speculate that performance on manmade scenes is consistent across the durations, 

whereas for natural scenes performance is better at 100ms than at 50ms. It may be possible 

that the mechanism subserving rapid scene processing struggles with natural scenes, in which 
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they are inherently a lower proportion of high spatial frequencies, but less so with manmade 

scenes, in which there are inherently a higher proportion of high spatial frequencies. That is, 

only if we are assuming that high spatial frequencies do in fact facilitate rapid scene processing. 

Alternatively, the significant two-way interaction between manmade/natural and SF may support 

another explanation for overall better performance on manmade than natural scenes. For 

manmade scenes, performance was relatively constant across the four SF conditions, whereas 

for natural scenes performance was poorest for scenes with the highest proportion of LSF and 

best for scenes with the highest proportion of HSF, with a linear relationship between 

performance and SF. Furthermore, performance was almost equivalent for manmade and 

natural scenes at the highest SF condition. In other words, it appears that for natural scenes, 

but not manmade scenes, HSFs facilitate rapid scene processing and LSFs do not. Conversely, 

for manmade scenes, both LSF and HSF are sufficient for rapid scene processing. This natural/

manmade split between the categories may account for our previous findings of better 

performance overall for HSF-filtered scenes. It is also worth considering that there was an  

unforeseen interaction between the predominately lower SFs inherent to natural scenes and the 

LSF filtering used in this study, that resulted in poorer performance.

Going forward, in future psychophysical and neuroimaging studies, it will be interesting to 

investigate how high spatial frequencies contribute to rapid scene processing. And, it will also be 

important to see how the type of scene — whether natural or manmade, or other 

parameterizations — and its inherent spatial frequency content and ‘spatial envelope’, 

contributes to this effect. For the moment, it is unclear why the findings of the current study do 
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not replicate others’ findings of a LSF-dependent mechanism mediating rapid scene processing, 

and of LSF being processed prior to HSF in scenes. The finding of facilitated performance for 

HSF scenes in the 100ms condition may support the finding of Rajimehr et al. (2011) that the 

parahippocampal place area (PPA) responds preferentially to the high spatial frequencies in 

scenes. Further, Walther et al. (2011) were able to show that human subjects were able to 

recognize and categorize line drawings of scenes, demonstrating that the structure of scenes, 

devoid of any low spatial frequencies, was able to convey information on the probable semantic 

category (Walther et al. 2011).  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