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Abstract

The International Association of Ultrarunners 24 Hour World Championships
holds a 24 hour race during which each entrant tries to run as many laps as
they can. There are several different strategies to running a race, and these may
be characteristic to the runner. Some runners may race at a consistent pace,
dropout, take breaks and/or fluctuate their pace. Records containing how many
laps a particular entrant runs over each hour in the race allow us the opportunity
to model the different types of strategies and how successful they are. Building
on previous work by White and Murphy (2013), we use mixture models, latent
class analysis, and model based clustering for mixed data. We alter the model
based clustering for mixed data framework, clustMD, that extends the estimation
capability of the method in scenarios it was not able to prior. We use this method
to determine running strategies in 24 hour races. In future work we plan to
develop a longitudinal model-based clustering approach using Poisson processes.
This approach will have a large scale impact on other applications outside the
field of sports. The same type of model-based clustering can be used in various
medical research questions, including clinical depression scores of patients over a
period of time.
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Chapter 1

Introduction

Our research focuses on methodology for determining different strategies in running long
distance ultra-races. For example, the International Association of Ultrarunners (IAU) 24
Hour World Championships were recently held in Katowice, Poland on September 8" and
9*" in 2012. 'They hold this prestigious event with over 200 runners representing their re-
spective countries. There are several possible race strategies. For instance, runner A may
start off very fast in the beginning of the race and then decrease pace until picking up the
pace at the very end. However, runner B might run very consistently the entire time. In
addition, runners might fluctuate their speed due to injury or rest stops. Runner C might
completely drop out of the race. Given count data on the number of laps a runner completes
each hour we define continuous, ordinal, and nominal variables to characterize the different
count trajectories and thereby strategies we might see.

After defining running terminology, some common racing strategies and variables, we explore
different clustering methodologies. To analyze the continuous variables, we use a Gaussian
mixture model. We then cluster our categorical data (nominal, binary, and ordinal variables)

through the use of latent class analysis. Although more difficult to interpret, we are still

IThis information was gathered from Arthur White and Dr. Thomas Brendan Murphys’, “Exponential
Family Mixed Membership Models for Soft Clustering of Multivariate Data



able to use these results to plot the trajectories that were identified for each class, similar to

the continuous setting.

We then turn toward combining these approaches into one mixture model estimation pro-
cedure for data of mixed type. We started with the framework developed by McParland
and Gormley (2015), clustMD, for use with continuous, ordinal, and nominal variables. This
approach uses Monte Carlo sample approximations when faced with intractable parameter
estimation for the nominal variables in particular. We found that this approach had limita-
tions in some scenarios, for example, sparse or missing categories within a cluster, that did
not allow some models to be fit. We extended the estimation capability of their framework
by adding some minor assumptions with respect to the Monte Carlo samples. The extended

approach now allows for a higher number of feasible models and performs well in our analyses.

We first run simulations to help assess performance. We conducted one simulation based off
distance runner strategies and another on the results we obtained through mixture models
with continuous features on the 24 Hour World Championship data. We then cluster the

original 24 Hour World Championship data to determine the final different race strategies.
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Chapter 2

Using Different Strategies to

Optimize Race Performance

A person may run to get into better shape, but running is also a competitive sport. There are
different types of races, which mainly vary by their distance, which ranges from as short as 60
meter races to as long as 26.2 marathons and 24 hour long races. Factors such as weather,
competition, age, injury history, training, and time of the year impact how a runner will
perform on any given race day. While the goal of every race is to finish the race as quickly as
possible or cover as much distance as possible, each runner does not run the same strategy
in every race. Over time the runner may find what works best for them and can approach a
race in a manner that gives the best chance of running their optimal race. Determining this

optimal race strategy is a necessary part of race preparation for any competitive runner.

A runner’s race strategy depends on a combination of the type of runners and the type of
race. The length of the race impacts the strategy but ultimately how a racer trains, what the
racer is used to doing, the body build of the racer, the natural talent of the racer, and how

the runner feels that day all impact the choice of strategy. Runners may choose a strategy
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before the race based on past performance, but they may also need to change that strategy
during the middle of the race given several different factors. A change due to weather or how
fast or slow the other runners are going are two instances where changing racing strategies
is done on purpose. Sometimes a runner changes their race strategy based off how he/she

feels during the race. These sudden changes can be unintentional and may happen naturally.

2.1 Running Terminology and Common Strategies

For ease of explanation, we first define a few common running terms/phrases.
e Pace: A rate of the number of minutes it takes to complete a mile.

e Steady Pace: Consistently running not too fast and not too slow relative to the

runners ability.

e Holding on: Still running at a consistent pace but almost at the point where it is not

physically possible for that runner to run that fast.

e Dying: Having a very slow pace, and getting slower, after running at a faster pace for

a period of time.
e Dropping Out: Stop running completely.
e Picking Up The Pace: Increasing the pace.

e Hitting the Wall: The point in a race when you cannot keep up your pace anymore
and start to slow down considerably. This is what we call the event after you cannot
“hold on” for any longer.

A few common strategies or outcomes to running races are:

12



e Starting off the race at a steady pace and maintaining that same pace for the length

of the race.

e Starting off the race fast, relative to the runner’s ability, and “holding on” at the end

of the race.

e Starting off the race fast, relative to the runner’s ability, and “dying” in the middle

and end of the race.
e Starting off the race fast, relative to the runner’s ability, and dropping out of the race.

e Starting off the race slow, relative to the runner’s ability, and picking up the pace soon

after.

e Starting off the race slow, relative to the runner’s ability, holding a consistent pace,

and picking up to a fast pace by the end of the race.

e Starting off the race at a steady pace, slowing down, and picking it up to a fast pace

at the end of the race.

Using information about paces during a race, we are interested in the different types of
strategies runners use. Additional analyses could then perhaps tie the type of racing strategy
to final performance. Within a race, we are interested in describing and characterizing
the number of different strategies with specific interest in finding strategies that might be

unexpected or unplanned.

2.2 Ultra-running/Ultra-marathons

An ultra-marathon is any race longer than a marathon (26.2 miles or 42.195 kilometers).

There are several kinds of ultra-marathons (50km, 100km 250km, 6 hour, 12 hour, 48 hour),
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but our application of interest is the 24 hour long race. A 24 hour ultra-marathon does not
have a specified distance. Instead, the winner is determined by who can cover the longest

distance.

A 24 hour long race requires different types of strategies compared to a race over a specified
distance. The extreme distance and time involved requires careful planning and conservation
of effort and energy. A consistent racing strategy as well as a slow, steady pace changing to
a fast, end pace are two types of strategies that are common in the 24 hour long race (versus
running as fast as possible and trying to hold on). However many racers are not able to run
consistently the whole race because it is simply very hard to do. Unlike a shorter race like
the mile or 5k, it is more acceptable to stop running for a brief period in a 24 hour long race.
A runner that is having a “bad day” may be forced to drastically change strategies in order
to complete the race. Given the length and difficulty of this race, we expect to see clear

fluctuation in running strategies, based on the ability of the runner (among other factors).

2.3 International Association of Ultrarunners (IAU)
24 Hour World Championship

Our application dataset is from the 2012 TAU 24 Hour World Championship in Katowice,
Poland. The International Association of Ultrarunners (IAU) is the organization that holds
the 24 Hour World Championship. This race is held annually and it is comprised of the
best ultra marathon runners in the world. There were 34 countries who participated in this
race. See Table 2.1 for the countries who participated. The 2012 race started at noon on
September 8, 2012 and ended at noon on September 9", 2012. There were 260 runners
who were scheduled to participate in the event and 248 who actually started the race (i.e.

12 runners were DNS (did not start)).
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Table 2.1: There were 34 countries who participated in the 2012 IAU 24 Hour World Cham-
pionship in Katowice, Poland.

Country | # | Country | # | Country | # | Country | # | Country | #
ALG 1 ARG 1 AUS 7 AUT 5 BEL 4
BLR 5 CAN 9 CZE 7 DEN 13 ESP 13
EST 12 FIN 13 FRA 12 GBR 9 GER 11
GRE 2 HUN 12 IRL 4 ISL 1 ITA 17
JPN 9 LAT 7 LTU 5 MKD 2 NED 3
NOR 7 NZL 7 POL 13 RUS 13 SRB 3
SVK 4 SWE 4 UKR 9 USA 16

2.3.1 Cumulative Laps

The course that the race is being organized on is a 1554m looped route in Park Slaski in
Chorzow very close to Katowice. The course the runners ran on was a 1554 meter loop
located in Park Slaski in a town very close to Katowice, Chorzow. For reference, a mile is
1600 meters. For every runner, the cumulative number of laps the runner ran is recorded in
the data file. See Table 2.2 for an example of how the data is recorded. For instance, if Mike
Morton, the eventual champion, ran nine laps in the first hour and seven laps in the second
hour, the data would show a nine under H1 (Hour 1) and 16 under H2 (Hour 2). Along
with the cumulative laps, the data file also contains the name of the runners, their age, the
country they are from, and their gender. The original data file showed information on every
runner who was registered for the race, regardless of whether or not they started the race.
Notice in Table 2.2, the last row has an index of 264. The numbers 89-91 and 217 were not

used as indices (no explanation was given).

2.3.2 Running Trajectories

We could also view each runner as a trajectory of their lap counts for each hour. We

might expect that characteristics of these trajectories would indicate the type of strategy
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Table 2.2: Dataset Sample: The data was recorded from the race in the following format.
Notice that Olsen has all Os filled in his hour totals (DNS). We also can tell that Scholz beat
Harvey-Jamieson because she completed more laps by Hour 24.

# Name Age | Country | Gender | H1 | H2 | --- | H24
1 SCHOLZ SHARON 36 AUS Female | 6 | 13 |--- | 37
2 | HARVEY-JAMIESON SUSANNAH | 26 AUS Female | 6 | 13 | --- | 50

264 OLSEN JON 38 USA Male 0 0 |--- 0

ultimately used. For example, the winner of this race, Mike Morton, had a very consistent

race (Figure 2.1).

Figure 2.1: Mike Morton’s Trajectory for the 2012 IAU 24 Hour World Championships in
Katowice, Poland.

| Name: MORTON MIKE | Age: 41 |
| Country: USA | M/F: Male |

8
/
i

\l

Number of Laps
4 6
| |

2
|

Hour #

The trajectory shows that he ran the same number of laps plus or minus one lap from the
fourth hour of the race until the end of the race. The fluctuation is most likely due to not
being finished with a complete lap at the time the hour is up (e.g. running 7.5 laps two
hours in a row would be recorded as seven for the first hour and eight for the second hour).

This type of consistent racing strategy, like Mr. Morton’s, comprises a large majority of the
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top finishers in the World Championship.

Other trajectories that are characteristic to the racing strategies that we talked about in
Section 2 can be seen in our runners. For instance, Figure 2.2 shows an example of a runner
who dropped out of the race. We define a dropout as someone who started the race but at
some point the hourly number of laps they ran was recorded as a zero for the remainder of
the race. We also have runners who do not run any laps for one or more hours near the end
of the race but then they begin running/walking again during the last hour. We decide to
classify these people as dropouts as well. We will talk more about the definition of “dropout”

in Section 3.4.

Figure 2.2: An example of a runner dropping out during the race.

| Name: SCHOLZ SHARON | Age: 36 |
| Country: AUS | M/F: Female |
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During this type of race, it is common to stop running and then to return and continue
running at a similar pace. This behavior is most likely characteristic of runners who are

taking a break or an unexpected event occurred (e.g. injury or thunderstorm). Figure 2.3
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gives an example of this kind of trajectory. Note there were no major unexpected events

(e.g. bad thunderstorm or snowstorm) that happened in this race to our knowledge.

Figure 2.3: An example of a runner stopping completely for at least an hour(taking a break)
and then running again after their break.

| Name: HORAKOVA RENATA | Age: 40 |
| Country: CZE | M/F: Female |
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Another common characteristic for some runners is to finish a race strong. Figure 2.4 gives
an example of what a trajectory might look like for someone who may have hit the wall but
since it was the end of the race, they really pushed themselves. Runners have this type of
characteristic because they may have saved too much energy for the end of their race or since

they are almost finished, they put extra effort in at the end.

For these running trajectories, we brainstormed summary characteristics that might indicate
a particular strategy. For example, a runner who drops out most likely has a big decrease in
their race pace at some point followed by a large string of zeroes. A runner who is consistent
may have the same number of laps ran each hour for an extended period of time. Since this
race was run in the night, a runner’s pace during the day may have been different than the

night. The most laps gained from one hour to the next and the most laps dropped in an
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hour from one to the next can also give indication of strategy. In Sections 3.4 and 4.2 we

will look at all of the variables we defined to help explain these racing strategies.

Figure 2.4: An example of a runner finishing the race strong during the last hour of the
race.

| Name: GARCIA PORTILLO AMELIA | Age: 45 |
| Country: ESP | M/F: Female |
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It is common for runners to have similar racing strategies. With the use of continuous and
categorical variables, we can classify these runners into groups. The statistical approach of
clustering will identify these strategies to describe the trajectories. Using continuous and
categorical variables in combination is optimal, however first we fit the continuous data using
model based clustering and the categorical data using latent class analysis. In Chapter 5 we
will combine the estimations of continuous, ordinal, and nominal variables to identify racing

strategies.
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Chapter 3

Gaussian Mixture Models for

Continuous Data

Given race information, we want to cluster runners into groups based off of their performance
in an ultra-marathon race. We start with modeling continuous variables that describe our
vector of lap counts using the commonly used Gaussian mixture model. After giving an
overview of the mixture model and its estimation, we define and motivate the continuous
variables used to describe the lap count trajectories. We then include some examples of the

resulting clustered race strategies.

3.1 Mixture Model Notation

The Gaussian mixture model assumes that the population density f(z) represents a weighted

combination of the group densities, fi(x). We identify fi(z) as the normal distribution [6].

flx) = mi- fula; 0
k=1
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As shown in [6], the corresponding likelihood for a mixture model with distribution f} (in

our case Gaussian) is

n K
LMIX(91,'" 79K§7T1;“‘ 7TK|X = Hzﬂkfk Xz|‘9k

The 60, has a mean pu;, and variance matrix ¥, that will identify the shape, volume, and
orientation of the cluster for the k' group/cluster. f; can be any multivariate distribution

but in our case we assume a multivariate Gaussian density, ¢y,

exp( — 2(x; — ) TS (xi — )
det(2mXy)

Or(Xi| e, X)) =

)

where K is the number of groups or clusters. The 7 is the mixture weight or probability
of the k' component. In our mixture model context, each probability distribution will
correspond to a race strategy cluster. The variables in x are assumed to be multivariate

continuous. The total number of runners is n.

The resulting models are either ellipsoidal, diagonal, or spherical and correspond to different
combinations of the features of the covariances, ;. There are 10 different combinations
of shape, volume, and orientation. Nugent and Meila outline the different combinations
and share an illustration on page nine of “An Overview of Clustering Applied to Molecular
Biology” (2010). We use either spherical, diagonal, or ellipsoidal covariance depending on
the model. Each of the 10 models has some combination of equal or varying volume, round,
equal, or varying shape, and axis parallel, equal, or varying orientation. For example, the
“VVV” model is varying volume, varying shape, and varying orientation. This is assuming

ellipsoidal variance. See Section 3.3 for our model selection procedure.

The Expectation-Maximization (EM) Algorithm is used to estimate our parameters. [6].

21



3.2 Estimation with the Expectation-Maximization (EM)

Algorithm

Briefly described here, the Expectation-Maximization (EM) Algorithm is used to fit the
Gaussian mixture model. See McLachlan [5] for more details. There are two iterated steps
to the EM Algorithm. The first is the Estimation step (E-step) and the second is the
Maximization step (M-step). In the E-step, we estimate the cluster assignments for all n
runners across each cluster k. The algorithm assigns a probability, 7x;, to represent the
probability that each runner ¢ belongs to each cluster k. These estimated probabilities can

be written as
T fw(T) _ T fr ()
f@) S @)

The M-step estimates the mixture parameters, mx, g, and ¥. Here 7y is the mixture weight

Vi =

assigned to the k' cluster (running strategy). puy is estimated by the following weighted
average,
. Z?:l VkiXi

T

where I'j, is the total number of runners that belong in a particular cluster k. The covariance
matrix is estimated depending on the model we use for defining the shape, volume, and

orientation. One example of the covariance matrix using the “VVV” model is

Z?:l Vi (Xi — pe) (X5 — Mk)T

Yo =
k Fk

After initialization, the EM Algorithm alternates between the E-step and the M-step until it
converges. Each choice of K and choice of covariance structure give a final set of parameter
estimates and cluster assignments. After estimation, each runner is assigned a vector of

probabilities of length K that return the probability of being in each group.
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3.3 Model Selection

Since we are estimating ten different clustering models for each of one to the total K clusters,
we need to choose a final model. Kass and Raftery (1995) [8] explain a common model
selection process. Briefly, the number of clusters K, and the clustering model is optimally
chosen by maximizing over the likelihood given the particular cluster model with the addition
of a penalized term for complexity. This is called the Bayesian Information Criterion (BIC).
It is given by [§],

BIC = —2 x logL(x|0) + log(n) x p

The estimation procedure returns BIC values for all of the possible models and numbers of
clusters. We then determine which model returns the highest BIC and choose this model as

the best fit for the data.

3.4 Continuous Variables

We now define a set of continuous variables that describe our lap count trajectories. Many
of these are based on experience in competitive running and are not necessarily statistically
derived. They are also variables that runners and their coaches naturally track and measure
and so are hopefully more easily understood in the field. Splitting up some variables, for
example, average pace into day and night pace will allow us to potentially see if runners took

breaks at points in the night or simply did not run as well certain times of the day.

e Average Pace For the Whole 24 Hours
We first define a variable that calculated the average pace for the entire 24 hours of the

race. The original dataset only had the cumulative number of laps ran for each hour
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over the course of the race. The average pace for the 24 hours of the race allows us
to more easily compare runners. Runners, in particular, would rather track an overall
pace compared to the number of laps they ran. For the purposes of quantifying pace,
we calculated all pace variables with respect to per mile. Since each lap in the race
was just under one mile (0.966 miles or 1.554 km), we converted the pace variables
to minutes per mile. For example, the winner, Mike Morton’s average pace for the
length of the race was just over eight minutes (eight minutes and two seconds per
mile). This was the fastest average pace. Figure 3.1 has the distribution of average
pace for runners who averaged less than 23 minutes per mile. We chose 23 minutes per
mile as our cutoff because Reynolds (2010), writer for the New York Times Wellness
Blog, made the following conclusion from the National Walkers’ Health Study, “The
majority of the walkers in this group in fact required at least 20 minutes to complete a
mile, and many had a pace of 25 minutes or more per mile.” [10]. We decided to take
23 minutes per mile as the cutoff for a slow to medium paced walk. The distribution
of average pace for the whole race was skewed right, unimodal, and the majority of the

data falling between eight and 15 minutes per mile.

We also calculated the pace for selected, shorter time frames. We broke up the average
pace into certain time frames as we expect paces to change for specific reasons during
the 24 hours. See Figure 3.2 for an example of how the paces might be broken up into
hour segments of the day and night. We eventually selected to look at the average
pace during the night (6pm to 6am) and the average pace during the day (12pm to
6pm on the first day and 6am until 12pm on the second day). Since the race started
at noon, the hours where the runners were running in the day were split up at the
beginning and end of the race. As a result, we found the average pace of the runner at

night (6pm-6am) and the average pace of the runner during the day (12pm-6pm) and
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Figure 3.1: Exploratory data analysis for continuous variables. We removed the runners
who did not start the race as well as runners who did not average less than 23 minutes per

mile.
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(6am-12pm). We believe breaking the pace up into day and night will identify patterns

in the runners.

Average Pace at Night (6pm-6am)

Figure 3.1 shows the skewed right distribution of pace during the night for runners who
ran less than 23 minutes per mile. The average pace during the night’s distribution
looks pretty similar to the average pace during the whole race (skewed right and uni-
modal), however there seems to be a higher spike of runners around 10 to 12 minutes

per mile and less falling in the 8-10 and 12-14 minutes per mile range.
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Figure 3.2: The Pace Variable is demonstrated in time frames. The average overall pace
for the 24 hours would be the average of the four paces listed on the Figure.
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e Average Pace During Day (12pm-6pm) AND (6am-12pm)
Figure 3.1 shows the skewed right and unimodal distribution of the pace during the day
for runners who ran less than 23 minutes per mile. The data look more uniform from
paces of eight through 12.5 minutes per mile and in the range of 15 and 20 minutes

per mile compared to the overall average pace and average pace during the night.

e Average Pace for the Whole 24 Hours when hourly laps do not equal zero

(Average Pace Nonzero)
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When we calculated the average pace for the whole 24 hours, we came across a poten-
tial feature of interest. Several runners did not run at all during one or more hours
of the race. As a result, their overall average pace significantly increased. To address
this, we also took the average pace only when hour laps did not equal zero. For in-
stance, if a particular runner ran five laps in hour one, zero in hour two, and three in
hour three, we would eliminate hour two when calculating the average pace. There-
fore, the average pace when the total laps does not equal zero is the average pace
when the runner has completed at least one lap per hour. This does not mean that the

runner did not stop at some point during the hour; but we have no way of knowing this.

Average Pace for Day when hourly laps do not equal zero (Average Day
Pace Nonzero)
Similarly, we calculated the average pace during the day for hours with non-zero hours

when the hourly laps do not equal zero.

Average Pace for Night when hourly laps do not equal zero (Average Night
Pace Nonzero)
We similarly calculated the average pace during the night when the hourly laps do not

equal zero.

Longest String of Hours of Number Laps Being Same

We wanted to define a variable that represented runners being consistent because we
suspected that the elite group of runners would run a very similar pace for the entire
race. To do this, we calculated the longest string of consecutive hours when the runner

ran the same number of laps.
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e Longest String of 1, -1, 1, -1 etc. (Number of Hours Running Same Pace)
One problem we identified with the previous variable is that a runner could be in the
middle of a lap at the end of the hour. As a result, even though they may be running
the same pace as the previous hour, they would be recorded as one fewer laps compared
to the previous hour. For example, a runner may have ran five laps in hour one and
four laps in hour two but was .01 miles away from completing five laps in the second
hour. The second hour may have one more lap recorded than the first hour even though
the pace has been consistent. We decided to define an additional variable that would
account for this type of artifact in pace consistency. Specifically, we defined a variable
that was the longest string where the difference from one lap to the next is 1, -1, 1, -1
or a similar pattern. For example, in Figure 2.1, we can see that in hour five Morton
ran seven laps, the next four hours he ran eight laps, and the following hour he ran
eight laps. The resulting string of differences between laps would be 1, 0, 0, 0, 0, -1.
Note that when there is an increase or decrease from one lap to the next (meaning a
difference of 1 or -1), it must be followed by a -1 or a 0 if a 1 is before and a 1 or 0 if a
-1 was before. In addition, if the runner had an increase of one lap and then remained
consistent for a few laps, the next time there is a change after the multiple zeroes,
there must be a -1 or we know that he/she has changed the pace significantly since the
previous increase. Simply said, the last 1 or -1 is followed by a -1 or 1, respectively
after a string of zeroes. For example 1, -1, 1, 0, 0, 0, 1 would not be valid but 1, -1,
1,0, 0, 0, -1 would be valid. In these two examples, the string of the same number of
lap would be six and seven, respectively. The bottom right histogram of Figure 3.1 is
skewed right but there is a spike between 22 and 24 hours, which we expect because

of consistent runners and dropouts.
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Table 3.1: Looking back on Figures 2.1 and 2.2, we can see what the trajectory variables
look like for Morton and Scholz. We added Olsen’s data in the table as well.

Name | Avg. Pace (Day) | Avg. Pace (Night) | Avg. Pace (Total)
MORTON 7.91 8.18 8.04
SCHOLZ 10.00 60.00 11.35

OLSEN 0.00 0.00 0.00

Name Largest String Same | Hour Number Largest String Same
MORTON 15 19
SCHOLZ 16 24

OLSEN 23 24

e Location of the End of the Largest String of 1, -1, 1, 0, -1 etc.
This variable is defined using the previous longest string of consistent laps. This
variable is simply the hour in which the largest string of 1, -1, 1, 0, -1 or variation
of the type of pattern we described above ends. The location of this string can give
information as well. For instance, it may end one or two hours before the end of the
race because the racer is finishing strong. There also may be other instances where
a runner had an injury or something unexpected occurred that caused inconsistent
pacing. If a runner was running very consistently for several hours and then all of a
sudden dropped out, we might think that this runner was one in the elite group but
either had an injury or an unexpected event come up that stopped him or her from

completing the race at a consistent pace.

Table 3.1 is an example of what the data frame looks like for some of the continuous variables
we mentioned. Notice that Olsen has the largest string of same laps (23) but an average
pace of zero; this is due to the fact that he did not start the race (DNS). These variables are
good representations of the running strategies/trajectories because they represent the speed
and consistency of a runner (two of the most important factors that determine how well a

runner is performing). These variables might be useful in clustering because the distribu-
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tions of each of the variables show separation across their value ranges. This characteristic of
these continuous variables might indicate different running strategies. While some of these
variables are integer only, they were all treated as continuous. As we notice in Figure 3.1,

the bottom right histogram is integer only.

Before we look at the mixture model results, we set some standard definitions about the
population of runners we were dealing with. First of all, as mentioned above, the population
of runners are only those that started the 2012 World Championship race. Did not start
(DNS) are those runners that were registered for the race but for some reason or another did
not race. We briefly talked about dropouts in Section 2.3.2, but this is a tricky definition
because a runner could not be running but could still be in the race because walking counts
toward their lap total. However, a runner could be running for a very brief portion of the
hour and then stop running. We consider a runner dropping out if they drop down to running

zero laps and continue that for the rest of the race.

3.5 Mixture Model Results

We explored different combinations of continuous variables using the mclust package in R
[3]. We did not cluster using all of the continuous variables at once because we wanted to
visualize our results and some of the variables are highly correlated together. Our first ex-
ample clusters the runners who started the race using the overall average pace while running
and the number of hours at the same pace (Figure 3.3). Note that we adjusted the y-axis to

have a minimum overall average pace of 60 minutes.

For these two variables, the chosen model was diagonal, equal volume, varying shape (EVI)

with five components or racing strategies. We notice that there are five clear and defined
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Figure 3.3: Normal Mixture Model Results when looking at Average Pace Nonzero and the
Number of Hours Running the Same Pace. We see that five groups is the optimal number
of groups given these two variables.
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clusters in the plot (Figure 3.3). For example, looking at the blue cluster, their average
pace, not including zeroes, is very slow to the point where they are almost walking (given
our definition of a walk is 23 minutes per lap). Therefore, these people most likely did not
run very long and did not run fast when they were running. In addition, the orange cluster
contains two people who most likely dropped out due to their low number of hours running
the same pace and their average pace nonzero around 23 and 60 minutes per lap, respectively.
The red cluster could possibly be runners who were running at a fast pace when they were
running but may have dropped out or started running again after dropping out for some
time. The purple and green clusters are runners who most likely were running the majority

of the whole race. The green cluster consists of the elite runners and the purple cluster has
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a wider range of finishers.

Overall, we continued to explore cluster performance for continuous variables. Here we
present three additional results that gave us useful information about the possible strate-
gies/results of runners. Clustering the average pace nonzero and the average pace during
the day nonzero (6am-6pm) selected five clusters/groups of runners. However, we chose to
make a subset in the clustering of the overall pace to less than 23 minutes per lap, the casual
walk pace (Figure 3.4). The purple cluster represents the elite runners we saw previously.
However, we now have two clusters that were not as visible before (the blue and orange
clusters). The orange cluster separated from the green cluster because their average pace
nonzero and average pace during the day was in the 15-20 minutes per mile range. The blue
cluster consists of runners who are running pretty fast overall throughout the entire race
(9-12 minutes per mile) but not as fast during the day (16-22 minutes per mile). The purple
cluster consists of the elite runners, both fast during the day and the race (8-10 minutes
per mile). The red cluster runs fast during the day and the entire race as well, but the red
cluster (10-12 minutes per mile) consists of runners who were slightly slower than the purple
cluster. The green cluster has more variability in how fast they are running relative to the
day time. We associate this with the runners who ran zero laps in hour three and then

continued running in hour four.

We also cluster the average pace nonzero and the average pace during the day nonzero. We
included all runners (aside from DNS), even casual walkers. In Figure 3.5, we see three
clusters with the majority of the runners and then one cluster (green) that consists of the
four runners who either ran a very slow pace during the day, a very slow pace throughout
the entire race, or both. We see in Figure 3.4 that the red and blue clusters average pace

during the day spread from eight to 13 minutes per mile and 8.5 to 17 minutes per mile,
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Figure 3.4: Normal Mixture Model Results when looking at overall pace and pace during
the day nonzero for runners who kept an average pace nonzero less than 23 minutes per lap.
We notice that five groups of runners seem to be the optimal number again.
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respectively. The average pace nonzero ranges from eight to 12 minutes per mile and the

blue cluster ranges from 12 to 25 minutes per mile.

Finally, we chose to also cluster three variables: the number of hours running the same pace,
the average pace during the day nonzero, and the average pace nonzero for runners who ran
less than or equal to 23 minutes per lap. Looking at the black cluster in Figure 3.6 we see
that it consists of the top (elite) runners. The cluster is not characterized by the runners
having the same pace, but more by their overall pace and very slightly by their pace during
the day. However, there is some overlap with respect to what cluster contains the fastest

runners because the average pace nonzero and average pace during the day between the
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Figure 3.5: Normal Mixture Model Results when looking at average pace nonzero and
average pace during the day for all runners who started the race. We notice there being four
groups; three of which consist of the five we have seen in the previous mixture models.
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red cluster, blue, and green clusters have value ranges that overlap. The reason why they
are not in the black cluster is that their average pace during the day nonzero is somewhat
higher. This is either due to the sudden drop in the three to four hour range or these may
be the runners that dropped out of the race. The ‘red’ runners, which overlap with the
black cluster, are those who did not run as well during the day as the black cluster. We see
that the blue cluster contains runners that have varied overall paces that are greater than
12 minutes per mile but their pace during the day is higher than all runners other than the
light blue cluster, which contains the dropouts. The runners in the blue cluster may have
stopped running during the race at some point but show more consistency when running

compared to the light blue cluster.
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Figure 3.6: Normal Mixture Model Results when looking at the number of hours running
the same pace, average pace during the day nonzero (6am-6pm), and average pace nonzero
for runners who ran less than or equal to 23 minutes per lap. A three dimensional plot gives
five clusters.
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In summary, so far we conclude that there is an elite cluster consisting of runners who are
running roughly the same pace throughout the entire race. There is another group of run-
ners with a very similar strategy but the variance of their overall pace is higher/consists of
a larger range of runners. The difference between the elite runners and the “second group
of runners” is consistency; specifically we partially attribute the race results for the second
group to their lack of consistency across the full 24 hour race. We also conclude that there

is a third group of runners who are similar to the second group but even more variable with
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respect to their average pace nonzero and their pace during specific times of the day, which
makes them slower. We also have reason to believe that there is a large group of runners who
are very slow during the day relative to their overall pace, possibly due to the unexpected
“third to fourth hour” time period. The “third to fourth hour” time period was the point in
the race when the majority of runners had a large drop in their pace during hour three and
immediately ran faster in hour four. We were unable to find information to explain these

unexpected results.

The mixture model results were useful as an explanation but limited in the use of a small
set of continuous variables. We next turn to latent class analysis, which allows clustering of
categorical variables with an eye toward learning what other information might be useful in

determining different running strategies.
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Chapter 4

Latent Class Analysis (LCA)

Gaussian mixture models allowed us to look at clusters of runners but only based on the
continuous measures. These variables were also dependent since all of them were related to
the runners’ pace. Our results seemed reasonable but there are several overlapping strategy
clusters that might be more well-separated if other information was incorporated. There
are many different categorical variables that might be able to explain the type of runner,
including variables created by categorizing our integer-based variables. For example, the
absolute value of the most laps dropped could be treated as a categorical variable where the
values are one, two, and three, where one is the category “Greater than Four Laps”, two is
“One or Two Laps”, and three is the category, “Three or Four Laps”. In this chapter, we
explore the use of Latent Class Analysis (LCA) as a tool to determine clusters based on

categorical data.

4.1 LCA Estimation

Latent Class Analysis estimates groups with multivariate categorical variables. Although it

is more difficult to visualize latent class analysis, we still are able to estimate and interpret
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probabilities of observations being in certain groups/classes. LCA has a similar mixture

model form [6],

G
X~ Z g fq(Xnl0y),
g=1

where G is the number of groups/classes/clusters and x,, are the multivariate observations.
The function f is the density of an observation being in that gth group and 6, are the

parameters for each cluster g.

4.1.1 Notation

All of the categories in the groups are modeled with a multinomial density. For instance,
looking at any variable, z, with d categories and given that it belongs in group g, the model
is:

zlg ~ Hp”x -

where x = j is the indicator function [6]. When equal to 1, the observation (runner) belongs
to category j. The probability, p;4, is the probability of being in group ¢ for the variable
that has value j. Assuming conditional independence, when we have k variables, Dean and
Raftery describe In this case, p;;, is the probability that some variable takes on the value j
in group g. [6]

The overall density, is then a weighted sum of all of the individual product densities. The
parameters in the model are estimated by maximum likelihood and using an EM algorithm
and/or the Newton-Raphson algorithm. We use the EM and Newton-Raphson algorithms

to maximize the latent class model log-likelihood function. The overall density follows:

2 (= T1 )

=1 j=1
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Determining whether we are able to fit a latent class model can be verified given the number
of parameters in the model. Essentially, there needs to be enough cell counts in the model

given by the following equation,

k k

[Idi> O d-k+1)xG.
1=1

=1

The above formulas are taken from “Latent Class Analysis Variable Selection” by Nema

Dean and Adrian E. Rafery [6].

4.1.2 Expectation-Maximization (EM) Algorithm

Similar to our Gaussian mixture models, the EM Algorithm is used to estimate the latent
classes optimally by maximizing the log-likelihood. The general EM algorithm is described
in Section 3.2. However, we do not only use the EM algorithm to construct the latent classes,
we also use the EM algorithm with a step that contains the Newton-Raphson algorithm. See

[11] for details.

4.1.3 Model Selection

Similar to Section 3.3, we choose the model with the maximum BIC as our best model. The

BIC [8] is calculated as,
BIC = —2 x log(maximum likelihood) + (p) x log(n),

where we define n as the number of runners and p as the number of parameters. We compare
the models that we fit for varying the number of groups G by taking the highest BIC and

declaring that as the best model.
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4.2 Categorical Variables

e Most Number of Laps Dropped in 1 Hour
The most number of laps dropped in one hour was calculated by finding the largest

decrease from one hour to the next (Figure 4.1).

e Most Number of Laps Gained in 1 Hour

Similarly, we found the most number of laps gained in one hour.

e Hour Number Having Largest Drop
The hour number having the largest drop is simply the hour number where their largest
drop occurred. Note that we return the hour with the smaller number of laps. For
example, if a runner has a largest drop from hour three to four, the recorded hour
number would be four. Some runners have the same largest drop more than one time.
For example, a runner may have dropped five laps from hours eight to nine and may
have also dropped five laps from hours 23 to 24. As a result, we defined two more

variables.

— Hour Number Having Largest Drop (Earliest)
The hour number having the largest drop (earliest) is simply the earliest point in

the race where the runner had their largest drop.

— Hour Number Having Largest Drop (Latest)
Similarly, we created this variable, as the latest point in the race where they had

their largest drop.

e Bounce Back From Largest Drop
After coming up with the largest drop variable, we also thought it would be interesting

to look at how the runners might react to their largest drop. They may have dropped
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Figure 4.1: Absolute Value of most laps dropped from one hour to the next and the hour
number at which this largest drop occurred. If the runner had two hours where they dropped
the same amount, we took the latest hour in the race as the value.
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more laps after their largest decrease or rested for a small period of time and then

continued at their normal pace.

— Earliest Bounce Back From Largest Drop
The earliest bounce back from the largest drop is simply the hour after the earliest
hour number having the largest drop occurs. For example, a runner may have
dropped five laps from hours eight to nine but we are interested in what he did
from hours nine to ten. If he dropped two more laps from hours nine to ten, then

his “bounce back” variable would be negative two (-2).
— Latest Bounce Back From Largest Drop
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The latest bounce back from the largest drop is the hour after the latest hour
number having the largest drop occurs. In our previous example, since the run-
ner’s latest maximum drop was from hours 23 to 24 (the end of the race) his

bounce back from his latest largest drop would be missing (NA).

e Hour Number Having Largest Increase
We also similarly found the hour number of the largest increase for the earliest and

latest point during the race.

Similarly,

— Earliest Hour Number Having Largest Increase

— Latest Hour Number Having Largest Increase

e Next Lap Count After Largest Increase
As a counter part to our idea of bounce back after a drop, we look at the hour number
directly after the runner’s largest increase. We think that it is useful to understand
the difference in the number of laps ran from their largest increase to their next hour.
We expect that either the runner will increase a little more the next lap if it is the end
of the race or we would expect that the runner would decrease because they went too

hard the previous hour (Figure 4.3).

Similarly,

— Earliest Result After Largest Increase

— Latest Result After Largest Increase (If there were multiple increases

of the same amount)
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Figure 4.2: Most laps gained from one hour to the next and the hour number at which this
largest gained occurred. If the runner had two hours where they gained the same amount,
we took the latest hour in the race as the value.
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e Largest String of Hours Consecutively Increasing
The largest string of hours consecutively increasing calculates the number of hours in
a row when the runner ran more laps than the previous hour. This is a more common
strategy in a shorter race because it is very difficult to make a drastic change in pace
for multiple hours in a row. However, in some cases, we may find that when a runner
took a break from the race completely, they may have come back into the race halfway
through the hour so their pace for that hour was not actually representative of the

actual pace they were running.

e Largest String of Hours Consecutively Decreasing
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Figure 4.3: Bounce back after largest decrease and the result after the largest increase in
the race. These results were taken the hour after their largest increase or decrease in pace.
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Similarly, the largest string of hours consecutively decreasing calculates the number of
hours in a row when the runner ran fewer laps than the previous hour. For instance,
we tend to see this behavior when a runner is in the process of dropping out of the
race. This tendency may also happen near the end of the race when a racer is “dying”
or running out of energy to run at a fast pace. This could be a very useful variable in

determining key characteristics of runners about the 24 hour race.

e Hour Number of Largest String of Hours Consecutively Increasing (Shows
three to four hour issue)

In relation to the largest string of hours consecutively increasing, we define a variable
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Table 4.1: Table of LCA probabilities. The following table shows an example of one of the
categorical variables (Absolute value of most laps dropped) that was included in the LCA
model.

Class | OneorTwo | ThreeorFour | Greater4
Class 1 2.90e-01 6.18e-01 9.17e-02
Class 2 2.41e-01 7.25e-01 3.44e-02
Class 3 7.99e-01 2.01e-01 5.33e-227
Class 4 7.99e-64 7.77e-01 2.23e-01
Class 5 1.00 2.16e-08 3.79e-65

for the hour number in which the largest string ended. We found a very interesting
pattern in the data approximately around the three to four hour mark in the race.

Many people stopped running and then continued running the next hour.

e Hour Number of Largest String of Hours Consecutively Decreasing
Similarly, we define a variable for the hour number of the largest string of hours consec-
utively decreasing. In particular, this allows us to make distinctions between someone
who may have been dropping out as opposed to someone who may have been running

out of energy to run at a consistent pace for the remainder of the race.

4.3 LCA Results

Using all of our categorical variables, we were able to fit a latent class model to estimate
the probabilities that a particular category is in each group or class. We ran several models
where the number of clusters ranged from one to five groups; a five group model was chosen
as the best fit. The results gave us a table of probabilities of being in each class for each
categorical variable (see, e.g. Table 4.1). Notice that there are three groups for the absolute
value of the most laps dropped. These groups are one or two laps, three or four laps, and

greater than four laps.
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In addition to the absolute value of most laps dropped, we also looked at the following

variables:

1. Most laps gained

Three categories: One or two laps, three or four laps, greater than four laps

2. Largest number of consecutive hours decreasing in laps

Three categories: One laps, two laps, greater than two laps

3. Largest number of consecutive hours increasing in laps

Three categories: One Lap, Two Laps, Three Laps

4. Bounce back after largest number of consecutive hours decreasing in laps
Three categories: Good (The number of laps increased from the previous hour), None
(The number of laps stayed the same from the previous hour), Worse (The number of
laps decreased from the previous hour).
5. (Last) Hour number with largest drop in number of laps ran from one hour to the next
Four categories: Less than or equal to Hour 6, Hours 6-12, Hours 13-18, Hours 19-24
6. (Last) Hour number with largest increase in number of laps ran from one hour to the
next
Four categories: Less than or equal to Hour 6, Hours 6-12, Hours 13-18, Hours 19-24
7. Lap count after the last hour number with largest increase in number of laps ran from
one hour to the next

Three categories: Zero Laps, Increased One or Two, Dropped Three or More,

NA (meaning the largest increase was in Hour 24, thus there is no hour after that.
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Figure 4.4 is a plot that shows the running trajectories for all of the runners in each final
estimated cluster. There are several conclusions we can draw from this. First of all, although
the plots are crowded, given the thickness of the lines in some areas, we can see where there
are consistencies in terms of strategies. For instance, it looks like Class three (the green clus-
ter) is the elite group of runners because their trajectories are the most consistent with their
biggest gains at the end of the race. We also see that there is only one person who dropped
out in this cluster (at hour four). Another interesting characteristic we see is the three to
four hour drop and increase. This is present in the elite cluster but it is not as relevant when
compared to classes one, two, and five. Looking at class five (the light blue cluster) we notice
that there are not many dropouts here but the number of laps run is more variable than
the green cluster. There also is large variation between laps 15 to 24, which shows signs of

inconsistency. We would define class five as our second tier of runners behind the elite group.

The remaining three clusters are very interesting in that we can see several different charac-
teristics that separate the classes. In particular, it seems that in class one there are several
largest drops and largest increases around hours 13 to 21, however in class four it seems
that the largest drops and largest increases are around hours 10 to 14. Therefore, it seems
class four and one being separated by the time during the race when runners are being very
volatile. Class two represents our class that contains the most dropouts and many of these

seem to happen before the 13th hour of the race.

While we were able to successfully fit the latent class analysis to our set of categorical
variables, this approach is still limited. Our next step is to build a mixture model that
simultaneously estimates clusters for both continuous and categorical variables, or data of

mixed type.
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Figure 4.4: Latent Class Analysis Results: Running trajectories for each class, where the
classes were made from latent class analysis
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Chapter 5

Model Based Clustering with Mixed

Data

Many problems arise when we have variables of mixed data types. In an all continuous setting
we would use mixture modeling for model based clustering, as explained in Chapter 3, and
in the case where we have categorical variables we would use latent class analysis, as shown
in Chapter 4. Many times, like in our application of running, we have both continuous and
categorical variables. Thus, ideally we want to use all of the information we have to make our
conclusions about the number of clusters in the data and the explanation for each. The idea
of mixture models with mixed data allow us to combine estimates using continuous, ordinal,
and nominal variables into one estimation. This particular approach is relatively new to
handling mixed data in model based clustering. The proposed model will allow us to put all
of the variable information we have in our dataset and analyze the continuous, ordinal, and
nominal variables separately but combine the estimation into one process. We plan to look
at how the fit of the mixed data model changes the clusters in the simple continuous and
categorical settings. We use the same method developed by McParland and Gormley [4],

where they discuss the latent variable models use of Gaussian distribution mixtures to fit
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the model and then extend it for broader use. The same Expectation-Maximization (EM)
algorithm is used to complete the estimation, except in the case when there are nominal
variables present. In these scenarios, a Monte Carlo EM algorithm is used. In our analysis
of running, we use this method because of the presence of continuous, ordinal, and nominal
variables. The goal with our analysis of mixed data types is to get all of the information
we have about our data to identify the best groups and explanations of racing strategies
used in an ultra-marathon. Although the latent variable model is hard to visualize, we see
how the clusters change in small dimension space by comparing them to our results from
the continuous setting of mixture models using only continuous variables in Chapter 3 and

analyze the algorithm through simulations.

5.1 Mixed Data Type Likelihood

There are three separate models before coming up with a joint model. McParland and
Gormley [4] briefly summarize developing a model for continuous, ordinal, and nominal

variables. For detailed information about the mixed data type likelihood, refer to their

paper.

5.1.1 Continuous Variables

The likelihood according to the clustMD model simply fits the continuous models based off

of a multivariate normal distribution. That is for all observations, 7, and continuous variable,
J 4]

Yij = Zij ~ N(Njaajz)
We use this model for all of the continuous variables entered into the data frame for clustMD.

That is if there are five continuous variables, the first five columns in the entering data frame
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will correspond to the variables where the model is fit in this way.

5.1.2 Ordinal Variables

Ordinal variable j has K; numbered categories at threshold parameter, v;. These threshold
parameters give the value of the latent continuous variable, z;;. z;; is bounded from negative
infinity to positive infinity while following a normal distribution z;; ~ N(y;, 0]2.). The model
can be estimated by the difference of two cumulative distribution functions. We can look at
all of the ordinal variables and see the relationship one level has compared to the other level.
Thus the probability is found for each level/category for the ordinal variables by taking the
difference of two cumulative distribution functions. That is,

P(y; =k) = @(M) _ @(M)

gj 9j

® represents the cumulative distribution function, ¢ is the number of observations, j is the
nominal variable we are looking at, k is the level /category in the j** ordinal variable, and
;& represents the threshold level that comes from looking at the quantiles of a normal

distribution [4].

5.1.3 Nominal Variables

The method for handling nominal variables is difficult and there are multiple ways to do it.
We will use the method that McParland [4] used, where they state that a multivariate latent
vector represents the nominal variable that is observed. The number of dimensions is one
less than the number of categories in the nominal variable. In the nominal variable context
1 K;—1

iz ) ~ MVNg, 1(py,%5), the scaled continuous vector we are looking at

Zij = (Z
is coming from a threshold of 0 and is computed in respect to the reference level /category.

That is, we see that the response y;; is set at zero and then is either equal to 1 or k depending
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on the calculated threshold. The threshold is defined as:

1 ifm]?X{zfj} < 0;
Yij =

e k=1 k k—1 _
koifz = mkax{zij} and 25 >0for k=2,---  K;

In the case of having binary data, we can treat the variable as having two responses instead

of some k defined.

5.2 Estimation

We adopted the McParland and Gormley framework but we found that the use of the Monte
Carlo samples (approximation required when there are nominal variables in the data) ran
ended up limiting the estimation in some cases; we address that here. Within fixing the
estimation in some of these cases, we found that we were able to fit more of the proposed

models than we originally could.

5.2.1 Basic Setup of Variable Thresholds

The function, clustMD, fits the mixture model for mixed data. The basic setup takes in an
N by J matrix, where N is the number of observations and J is the number of variables
in the dataset. This matrix, Y, must have the J variables in order where the continuous
variables are first, the binary are second, coded as (1 or 2), ordinal third coded as (1,2, ...),

and finally nominal variables coded as (1,2, ...).

We then check to see if there are any continuous variables and if so, scale the continuous
variables by centering and dividing by the standard deviation. We then find the maximum

value of these scaled continuous variables across all columns of Y, which are continuous, and
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store them in a vector K. We then set the continuous variable max values to be NA in vector

K and leave the number of categories for each categorical variable.

We calculate the threshold parameter for the ordinal variables by taking each ordinal variable
and calculating the cumulative sum of the table of categories. We then proceed to take the

quantiles from the normal distribution. See Figure 5.1 for an example.

Figure 5.1:  Plot of the Quantiles assigned to an ordinal variable. For instance, the category
that is coded as one for the ordinal variable would receive a threshold of negative infinity,
category two would hold the value at the red line, three as the value at the purple line, and
four as the value at the green line.
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Notice in the figure that the blue line represents negative infinity and it is assigned to the
category coded as a one in the nominal variable. Similarly, the red line holds a value that
is assigned to the category coded as a two in the nominal variable. Similarly, we can say

the same for categories three and four for the purple and green threshold values, respectively.
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Before finding the threshold parameters for the nominal variables, we must check to see how
many there are and take one less than the number of categories there are in each nominal
variable. That is, we take the maximum number of categories for each nominal variable and
subtract one, and then sum the nominal categories. We need this number so we can initialize
a matrix for the threshold. In the nominal setting, we said that the threshold is centered at
zero, therefore, the other categories are in reference to one group category. This reference
group is the maximum number of categories for each nominal variable. That is if variable x

had three categories, the reference group would be category three.

To calculate the threshold parameters for the nominal variables, the model takes truncated
random deviates for all of the categories minus the reference category in each nominal vari-
able. That is, the model takes a random deviate for all of the categories that are not the
reference group. Therefore, if there are three categories in the nominal variable, the third
group is the reference group. For the category that is one less than the reference category,
the lower truncation point is the maximum of the random deviate for the previous categories
that are not the reference category. Figure 5.2 shows an example in the case when the
nominal variable has three categories. Notice that when the nominal variable, y, is equal
to category one, the two threshold values (in our case the maximum value is three and we
subtract one to get the two threshold values) are taken from the distribution that represents

the red density. Notice that these values will be negative.
Second, when the nominal variable, y, is equal to category two, the first threshold value

is taken randomly from the distribution that represents the blue density and the second

threshold value is drawn randomly from the green density.
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Figure 5.2: Nominal Threshold Value Distributions for three categories
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The opposite holds true when the nominal variable, y, is equal to category three. That is the
first threshold value is drawn from the green distribution and the second threshold is drawn

from the blue threshold value. See McParland and Gormley for specific theoretical details [4].

5.2.2 Estimation Overview

The EM algorithm is used to fit the model and when there are nominal variables, an approx-
imation using Monte Carlo samples is used in the expectation step of the EM algorithm.
Refer to Section 3.2 for a summary of the EM algorithm. It differs in that now we cal-

culate the complete log likelihood to latent data, which combines continuous, categorical,
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and nominal variables. We must complete the expectation of the log likelihood three times.
The formulas for the three expectations can be found on pages seven and eight of McPar-

land and Gormley [4]. We will briefly discuss the expectation and maximization steps below.

The covariance matrix Eg is diagonal for several reasons. It is diagonal because this limits
the number of parameters that we need to estimate. It limits the number of parameters we
need to estimate because the covariance matrix can be shown as the product of probabili-
ties. It is simple to calculate the probabilities for ordinal variables because we can use the
threshold parameters we calculated in Section 5.1.2. In addition, we can find the mean and
sigma components of these ordinal variables given these threshold parameters because they

are the first and second components of a truncated Normal, respectively.

The maximization step of the algorithm depends on the model. There are six possible models
in this setting, (“VVI", “EVI”, “EEI”, “VII”, “VEI”, and “EII”). The expected value of
the log likelihood of the model parameters is maximized in this process. See McParland and

Gormley [4] and McLachlan and Krishnan (referenced in McParland) for further detail.

There are constraints for identifiability with respect to nominal variables. We identity the
nominal variable categories in Section 5.1.3. In the presence of nominal variables, we sim-
ulate from the multivariate normal distribution the number of times we initiate the Monte
Carlo samples. We also fit the diagonal matrix based off of simulated values we get from the
multivariate normal distribution. We then need to calculate the first and second moment
of the latent data where the dimension of the data is p plus the number of categories we
have in the nominal variables minus one for each nominal variable we have. This will return
the expected value of the truncated normal after we calculate the empirical moments corre-

sponding to the reference category for nominal variables. We are able to get the standard
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deviation and probabilities of belonging to each category throughout this process.

5.2.3 Estimating Parameters with Nominal Variables

In the presence of nominal variables, we must use a Monte Carlo approximation that finds
the actual probability of the response category based off of many simulated vectors from a
normal distribution with mean ug and covariance Eg, where these are the means and co-
variances for each cluster, g. The mean and sigma components for nominal variables are
also related to the first and second components of a truncated Gaussian distribution but
the thresholds, as we mentioned in Section 5.1.3, are very difficult to compute so we use a
Monte Carlo in this situation as well. The first component is the sample mean of all Monte
Carlo samples that return a response k where k is the number of categories in the nominal
variable. The second component is the inner product of all of the simulated vectors from the
Monte Carlo samples that give response k& and then finding the sample mean of the inner

products.

We encountered many difficulties when running simulations in the nominal variable setting,
specifically in the process of the algorithm when we check to see if the number of categories
for the nominal variables are equal to the number of probabilities in the function. We were
unable to fit the clustMD from the data we simulated and figure out what the problem was
because our strategies were well separated. We found that the data we simulated in this
simulation may have been too well separated because when the nominal variables broke down
the categories in combination with the other variables, we had sets that did not contain any
one of the three categories. This should be seen as a good thing because we believe that
there is close to a zero percent chance that this subset of the observations belongs in category

x for that nominal variable. As a result of this error, we were unable to fit the data using
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clustMD, resulting in not getting misclassification rates and the ability to interpret our
clustMD results. After trying to adjust the distributions of our strategies and not having
much luck, we decided to alter the clustMD package by fixing the particular error we kept
seeing. We will describe what we did and how adjusting the Monte Carlo samples led to

extending our estimation capability.

5.2.4 Extending Estimation Capability

When fitting the clustMD model, we came across issues when iterating through the Monte
Carlo samples. Specifically, we checked to determine if the number of categories for the nom-
inal variables is equal to the number of probabilities. We changed the algorithm to cover
the case if they are not equal. If they were not equal, we substituted a probability of 1e~'°
in for the category that does not have its respective probability. We then subtracted (1e~1°
divided by the number of remaining categories) to get the new respective probabilities for
the categories that did have category classifications. For instance, there is a vector with a
length of the select number of Monte Carlo samples estimated from the nominal variables
in the E-step. If there are three categories in the nominal variable, the vector will consist of
ones, twos, and threes. We get the probability of each being a one, two, and three and store
it to be passed into the Monte Carlo simulation. However, if there are no twos in the vector,
the clustMD model simulation breaks. Therefore, we give the category (in our case two) that
is missing from the Monte Carlo samples a very small probability to allow the simulation to

continue. See Table 5.1 for the probability vector before and after substituting zero for the

missing nominal category probability.

We then must update p, and X, for the Monte Carlo sample to avoid encountering another
error in the estimation process because of “NA” values for the subsequent iterations. If

we suppose that zf is the expectation of the complete log likelihood with respect to latent

o8



Table 5.1: A table of the probability vector before and after substituting zero for the missing
nominal category probability

Probability Vector Category 1 Category 2 Category 3
Before A% 6%
After 0.39999999995% 1e7 %% | 0.59999999995%

data and [, is the latent cluster labels then we can define calculating F(z]|y;; = k,l;; =
1, pg, X4, m,) and E(szzﬂyw = k,lig = 1, py,%,,m,) for the Monte Carlo simulation where
yi; = k is for nominal variable j [4]. We generate these Monte Carlo samples so that we can
calculate the probabilities 7;, where 7 represents the nominal variable and g represents the

category in the nominal variable.

This is why we need to have the probability for each category. The p, and ¥, need to
be updated but cannot be updated when there are no simulations for one category in the
previous iteration. Therefore, we stored the old p, and X, so that if we run into the case
where one category is missing their probability, we can use the old pu, and X, to plug in for

that missing category and continue with the E-step estimation step for the following iteration.

5.3 Model Selection

Similar to our mixture model estimation in Section 3.3, we will use the Bayesian Information
Criterion [8] to conduct our model selection. The BIC cannot be calculated but we can

estimate the observed likelihood so we can calculate our BIC:

BIC = —2 x logL(x|0) + log(n) x p
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In order to choose the number of groups K/model, we iterate through all of the possible
models and look to see what BIC is the highest. The majority of the time will take the
number of groups and model with the highest BIC, but in some cases it may be appropriate

to take a different model and group.

5.4 Simulated Distance Runner Strategies

We decided to run a few simulations to help interpret the results of the clustMD model. The
issue we came across involved interpreting the clusters because there are reference groups
when looking at the nominal variables and we also have no way to visualize what is going on
like in the mixture models scenario. Once we simulated the data, we were able to fit clustMD
on this data and see how the misclassification rate performs. We then hope this allows us to
make some conclusions based off how well we believe the clustMD algorithm is working, as

well as interpreting results based off our underlying assumptions from the simulated data.

We ran a simulation that was completely independent of the continuous and categorical re-
sults we obtained from the model based clustering and latent class analysis. Therefore, we
decided to simulate three different strategies that we feel explain the majority of the groups
in our data based off of guessing how the distributions of the variables would look. We
wanted to make sure that the variables were separated among strategies to distinguish be-
tween the groups. We quickly noticed problems once we started fitting the clustMD model.
These problems will be outlined as well. However, the three strategies were simulated as

follows:

1. Strategy 1 (Elite, Consistent, Low Variability)

We simulated the dataset by looking at each variable for each strategy separately. For
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instance, we guessed that the average pace nonzero would range from eight minutes/lap
(min/lap) to 10.99 min/lap for the elite group. See Figure 5.3 for the distribution of
the elite group’s average pace nonzero compared to the other two groups. Each of the
distributions for all of the variables can be graphically visualized in this way. Contin-
uing on with the average pace during the day nonzero and the average pace during
the night nonzero, the elite group’s range of pace is eight min/lap to 10.5 min/lap and
8-11.5 min/lap, for day pace and night pace respectively. All of the pace variables were
constructed under a uniform distribution. We adjusted the distribution accordingly
to account for a skewed left, skewed right, or normal distribution of paces. Finally,
the same pace variable was distributed across 7 to 23 hours and skewed to the right.
However, we made sure that the distribution picked up the most consistent runners
since we think that the most consistent runners in the race are the ones who are going
to run the fastest/be in the elite group.

The two ordinal variables are the hour number where the largest drop and largest gain
occurred. For the largest drop, we decided that the range of laps would be from hour
5 to hour 23 with an equal probability of each hour. However, for the largest gain, the
distribution would appear to be from all hours of the race with varying probabilities

that would make the distribution skewed left.

Finally, the nominal variables, we had most laps dropped from one hour to the next
ranging from one to three laps with probability of each of those categories as .2, .65,
and .15, respectively. Similarly, the most laps gained from one hour to the next will
range from one to two laps for the elite group with an equal probability for each of

those two categories.

We simulated these variables for 1000 observations using the appropriate distributions
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Figure 5.3: Continuous Variable: Distribution of runners’ average pace nonzero by racing

strategy.
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we described above. We then put this strategy into a data frame as the first 1000
observations with eight variables. The second and slow strategies will follow in the
data frame as the next 2000 observations. We experimented with a different number of
observations and different number of variables but we wanted to make our estimation
consistent with how we fit the original clustMD model as described in the beginning

of this chapter.

Strategy 2 (Second, Somewhat consistent, High Variability)

For strategy 2, we guessed that the average pace nonzero would range from 10 min-
utes/lap (min/lap) to 13 min/lap. See Figure 5.3 for the distribution of the second
group’s average pace nonzero compared to the other two groups. The second group’s
range of pace is 10 to 12.5 min/lap, for both the day and night pace. The same pace

variable was distributed across 5 to 17 hours and a small skew to the right.
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The largest drop range of laps would spread across all hours of the race with an equal
probability of each hour. However, for the largest gain, the distribution would appear
from hours 4 to 23 of the race with varying probabilities to make the distribution

skewed left.

Figure 5.4: Ordinal Variable: Density of the simulated hour number largest increase from
one lap to the next
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For the second strategy the nominal variables we had was most laps dropped from
one hour to the next ranging from one to four laps with probability of each of those
categories as .25, .45, .25, and .05, respectively. Similarly, the most laps gained from
one hour to the next will range from two to four laps for the second group with a
probability vector of .6, .2, and .2 for the three categories, respectively. Figure 5.4
shows the density of the simulated hour number largest increase from one lap to the

next. Notice that the distributions is uniform for the slow group but skewed left for
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the elite and second groups.

. Strategy 3 (Slow, Inconsistent, High Variability)

We guessed that the average pace nonzero for the slow group would range from 12
minutes/lap (min/lap) to 21 min/lap for the slow group. See Figure 5.3 for the dis-
tribution of the slow group’s average pace nonzero compared to the other two groups.
The slow group’s range of pace is 12 min/lap to 18 min/lap and 12 min/lap to 24
min/lap, for the day and night, respectively. The same pace variable was distributed

across one to eleven consecutive hours.

For the largest drop, we decided that the range of laps would be from hours 5 to 23
of the race with an equal probability of each hour. However, for the largest gain, the
distribution would appear from hours 1 to 23 of the race with the same probabilities

for each hour.

The most laps dropped from one hour to the next ranging from three to six laps with
probability of each of those categories as .6, .25, .1, .05, respectively. Similarly, the
most laps gained from one hour to the next will range from three to six laps for the slow
group with a probability vector of .5, .35, .1, .05 for the three categories, respectively.
Figure 5.5 is a side-by-side bar plot showing the distribution of the simulated most

laps dropped from one hour to the next hour.

Under the new model, the simulation worked and actually seems to be working as well if not

better than before. We now are able to estimate using all of the models given in the clustMD

model using our adjusted algorithm. We were able to calculate BICs for many different

models and of many different group sizes for these models. The adjusted algorithm fit well

according to the BIC values shown in Figure 5.6 and we got low misclassification rates again
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Figure 5.5: Nominal Variable: Side-by-side barplot showing the distribution of the simulated
most laps dropped from one hour to the next hour
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for the “EVI’ model with three groups as shown in Table 5.2. Based off of this simulation,
we find that the best model is using the “VVI” model with four groups. Figure 5.6 shows the
BIC values for all models fit when using the adjusted clustMD algorithm with the distance
runner strategy simulation data. In this case, we would most likely choose the “VVI” model
with four groups, but the “EVI” model with three groups may be better. Since we simulated
data corresponding to three groups, there is a reason why the “VVI” model is performing so

well with four groups.

We analyzed to see why the “VVI” model with four groups was fitting better than the
“EVI” model with three groups. Figure 5.3 shows the distribution of simulated runners’ for

the average pace nonzero and similarly the other figures show some of the other variables we
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Table 5.2: Table of misclassification rates from the simulation of distance runner strategies.

It was independent of any of the results we obtained thus far and was also fit using the
altered clustMD algorithm.

Observations | 1:1000 | 1001:2000 | 2001:3000 | Total
Misclass. Rate | 0.007% 3.3% 6.4% 3.47%

Figure 5.6: This shows the BIC values for all models fit when using the adjusted clustMD
algorithm with the simulation of distance running strategies data.
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simulated.

In particular, the histogram of the average pace nonzero has a very large slow group because
the pace spreads from 12 min/lap to 21 min/lap. This is interesting because the “VVI”
model at g = 4 actually splits up this group into separate groups (Figure 5.7). The “EVI”

model for three groups almost has the identical plot of the distribution of simulated runners’
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Figure 5.7: Using the VVI model with four groups, we compose the distribution of runners’
average pace nonzero by racing strategy.
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Figure 5.8: Using the EVI model with three groups, we compose the distribution of runners
average pace nonzero by racing strategy.
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(Figure 5.8). Obviously we know how many groups are in this data because we simulated it
in a way that composed three groups, but it is interesting to see the “VVI” model with four

groups estimate better (in terms of BIC).

We believe that the adjusted version of the clustMD model is appropriate for fitting models
that combine continuous, ordinal, and nominal variables. In any occurrence that we have
more information about how the clusters should be separated, it should be beneficial for the
estimation process of the model, not an issue. In the initial clustMD model, we are seeing
this particular characteristic of the data becoming a problem for our estimation purposes,

when it clearly should be benefiting our our model as a whole.

5.5 Simulation of World Championship Running Strate-
gies

This simulation we ran was outlined by each strategy according to output from the mclust
model. Throughout our analysis of the continuous and categorical variables using mclust
and latent class analysis, we consistently were identifying an elite group, a group that was
slower than the elite and less consistent, and then a group that was very inconsistent in
terms of their characteristics. We based our simulation off of the normal mixture model
result from Figure 3.3 but split the classifications into three categories. Therefore, this
world championship running strategies simulation has dependence on our previous results
and thus we would expect it to perform relatively well. In the simulation of distance runner
strategies, we will construct our groups and data completely independent of the work we
have done thus far. We have outlined the simulation of the world championship running

strategies as follow:
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1.

Strategy 1 (Elite, Consistent, Low Variability)

Referencing Figure 3.3, we took the green classified cluster and claimed that this was
the “elite” group and thus the basis for our Strategy 1. We claimed that these runners
are the fastest runners (meaning their average pace nonzero is the fastest relative to the
majority of the other runners). In addition, this group is also very consistent relative
to the other runners as well. Going along with these two characteristics, the runners

in this group have low variability from lap to lap.

Figure 5.9: Distribution of runners’ average pace nonzero simulated based off a uniform
distribution where the minimum and maximum values are the minimum and maximum
average pace nonzero of the elite group specified from the mclust model referring to Figure

3.3.
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Our next step was to simulate the variables that we will be using in our clustMD
model. We simply took the eight variables that we have been using throughout all

simulations with the clustMD model. We simulated the continuous variables (average
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pace nonzero, average pace during the night nonzero, and average pace during the
day nonzero) from uniform distributions. We set our minimum and maximum bounds
based off of the minimum and maximum paces ran from the “elite” cluster classifi-
cations from the mclust model. We removed outliers because we think that this will
be accounted for in the variability of the uniform distribution model. For instance,
Figure 5.9 shows the distribution of average pace nonzero from the simulation of all

strategies.

Figure 5.10: Density of the simulated hour number largest increase from one lap to the
next using the mixture models results for the basis of the simulation.
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The rest of our variables were categorical and we simulated them by taking a sample of
the category numbers with probabilities associated to the mclust category observation
labels from the elite cluster. We looked at how many runners were in each of the

categories and then found the probability of all of the runners to see the proportion

70



of runners who were in those respective categories. We used these probabilities as
the probability vector when we were simulating our sample for the five categorical
variables. This was done for the absolute value of most laps dropped, the most laps
gained from one lap to the next, the hour number where the largest drop occurred, the
hour number where the largest increase occurred, and the number of laps where the
runner is running approximately the same pace. Figure 5.10 shows the distribution of

the simulated hour numbers for largest increase from one lap to the next.

. Strategy 2 (Second, Somewhat consistent, High Variability)

Similarly to strategy one, we looked at the mixture model results. This group has
a slower average pace nonzero than the elite cluster and also a slower average pace
during the day nonzero and night nonzero as well. In addition, they are less consistent
runners and have higher variability in terms of their largest drops in the number of

laps completed from one hour to the next as wells the largest increases.

We came up with our simulated dataset by taking 1000 observations and simulating

the eight variables in the same manner that we simulated strategy one.

. Strategy 3 (Slow, Inconsistent, High Variability)

The third strategy takes on the three clusters that were not the elite or slow group
from the normal mixture model results. The characteristics of these runners are that
they have a much slower average pace nonzero and are highly variable in consistency
and the other variables explaining the data. For instance, these runners have more
categories for biggest increase and decrease in the number of laps from one lap to the
next.

We also simulated 1000 observations and the eight variables in the same manner that

we simulated strategy one and two.
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Table 5.3: Table of misclassification rates from the simulation of World Championship run-
ning strategies. This simulation was dependent on the results we obtained from our mclust
models.

Observations | 1:1000 | 1001:2000 | 2001:3000 | Total
Misclass. Rate | 1.00% 1.2% 3.7% 1.97%

The clustMD model fit appropriately as expected given that it returned a low misclassifi-
cation rate as shown in Table 5.3. We are no longer having difficulty fitting the clustMD
model for some of the models, but we still are for larger groups when looking into the World
Championship Running simulation. From one to four groups, the “EII” model one model
was the only model that could not fit four groups. Therefore, the new version of clustMD is
fitting very well with the same or lower misclassification rate for all of the models. Based off
of this simulation, we find that the best model is using the “EVI” model with four groups
(Figure 5.11). We have shown that the new algorithm of clustMD seems to be estimat-
ing correctly given data that is based off of the continuous results. This aids us in our

interpretation of the types of running strategies in the 24 Hour Ultra-Races.
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Figure 5.11: This shows the BIC values for all models fit when using clustMD with the
simulation data on the World Championship Data.
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5.6 Mixture Models with Mixed Data Results

Notice the difference between the classifications of the plot on top and the plot on the bottom
in Figure 5.12. The plot on the top was made by fitting model based clustering (mclust) on
two variables. These two variables were average pace nonzero running less than 23 minutes
per laps and the average pace during the nonzero running less than 23 minutes per lap. The
result shows well distinguished clusters in two dimensions, however there is more information
that we have in our dataset that has not been accounted for. Now, taking a look at the
bottom plot, we notice that there are the same two dimensions but the classifications are
different. This plot came from classifications made using mixed data types with clustMD. We
would expect that the classifications would not be the same because we used eight different

variables to fit the mixed data effect model. If we were to plot all eight variables in a ten
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dimensional space, we would hope to find distinct clusters like the top plot. In summary,
this plot is showing the difference of the two methods and how more explanation can lead

to very different results looking in a reduced dimension space.

Figure 5.12: This is showing the comparison of the cluster classifications from using two
variables on clustMD and using ten mixed data types on 10 variables.
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We can see from Figure 5.13 that all of the models estimate better as the number of groups

used goes up. However, once we reach five groups or in some cases four, the estimation
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procedure stops working. In the simulated data we were able to estimate better because
we had more observations. Part of future work will be to change the estimation so that we
can estimate when the number of groups is greater than four. In addition, all of the models
do not work when using the actual dataset of 248 observations. There are several reasons
why the estimation procedure most likely stopped working but it most likely is because
there are too many parameters to fit in the model given the small amounts of data we have.
Figure 5.13 easily allows us to compare the models and their respective fitted BIC values
and based off of the visualization, we can easily tell what model is the best. The model with
the red star, EVI with four groups, had the highest BIC in absolute value. It is important

to note that in this figure, the three squares that have an x on them could not be fit.

Figure 5.13: The heat map shows what model with group number G is the best fit based
off of the adjusted clustMD algorithm. The square with the red star is the best model and
the three ‘X’ models were not fit at all.
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Looking at the results of the heat map for the BIC values for the fitted models, we chose
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to fit the “VVI” model with four groups and then visualized the results by plotting the
trajectories. Figure 5.14 breaks the runners down into four different groups, a number which
we were seeing when we were running our mclust and latent class analysis models.

Figure 5.14:  clustMD (VVI Four Groups) Results: Running trajectories for each class,
where the classes were made from the EVI model with four groups using clustMD
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The green group is definitely the slowest group and contains the runners who drop out. The
red group (class two) looks like the elite group. The black group and blue group are very
similar and definitely are the middle two groups in terms of pacing. It seems that the blue
group has more variability in the middle and late hour numbers. It seems that the largest
drops and largest increases and the time of when these occur distinguish these two groups.
It seems that the blue cluster or class four has their largest increase in the race during the

23rd hour, whereas the black group seems to have their largest increase all throughout the
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race. Also, it seems that the black cluster has largest drops around the 12 to 14 hour mark
and the 17-18 hour mark whereas the blue cluster varies much more in terms of their largest

drops.

5.7 Interpretability Comments

Interpreting the means returned from the clustMD model remain a challenge. The way in
which the package chooses a reference variable and the threshold parameters that distinguish
which group/category a runner is in makes it very difficult to see the difference between the
runners. A plot like Figure 5.14 give us one the best visual pictures of how the clustMD
model is breaking up the runners into different groups. Based off of that plot, it seems that
we are getting both continuous and nominal/ordinal conclusions based off of how the run-
ners are being clustered. We can tell the difference in the pace of runners from the slowest
group to the fastest group, but in order to distinguish the runners who are in the middle

two groups, we need to look at some of the nominal and ordinal variables.

Using the definitions of the nominal and ordinal variables we calculated, we can scan the
trajectories in Figure 5.14 to get a general sense of how that class was constructed. We can
perform exploratory data analysis on the runners in each of their respective clusters to get a
better understanding as well. We constructed our data simulations to see how the clustMD
model would react when we had more data and as we saw, the misclassification rate was
very good and we were able to estimate using all six of the possible models. Interpreting
the nominal variables remain difficult because the mean values returned depend on which
category is the reference group. Our discussion indicated that the maximum category in the
reference group (that is if there are three categories in a nominal variable, three would be

the reference category) in a nominal variable.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Throughout our analysis of running data from the 24 Hour World Championships, we were
able to make several conclusions. We were able to understand how the use of different strate-
gies can be used to optimize race performance through analyzing continuous, ordinal, and
nominal data. The use of a Gaussian mixture model allowed us to analyze the continuous
data by clustering. Our mixture model results showed three or four main strategies/groups
of runners. The cluster results showed there was an elite group who ran very consistently
throughout the entire race, one or two “middle” groups, which were less consistent than the
elite group and paces were more variable than the elite group. Finally, there was a slow
group or group of runners who stopped running at some point in the race. However, we
could only analyze continuous data in the mixture model framework so we used latent class
analysis to analyze categorical variables. We can conclude that the latent class analysis did
not identify the three or four clusters we found from our Gaussian mixture model, but broke
down the classes where the time frame in which a runner picked up their pace, dropped their

pace, fluctuated their pace, dropped out, and stopped running. We were able to conclude
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about a runner’s strategy through mixture models and latent class analysis, but we needed

to find a way to combine the estimation of continuous and categorical variables.

McParland and Gormley recently released the idea of using mixture models with mixed data
to allow the combination of analysis on continuous, ordinal, and nominal variables. We used
their framework but extended the estimation capability. The estimation of nominal variables
was constructed in a way where we could not have a nominal variable that had an empty
category once the Monte Carlo simulations started. We claimed that if the probability of
not being in a class is zero, then this should give us more information on that combination
of estimation. As a result, we adjusted the clustMD framework to set the probability to
approximately zero and adjusted the remaining probabilities for each nominal category not
equal to the empty probability. Changing the way the Monte Carlo samples were simulated
allowed the new version of clustMD to fit appropriately. Our results with this new extension
of clustMD allowed us to fit more types of models as well as have very good misclassification

eIrors.

We concluded that the continuous pace variables explain the majority of the variability in the
models that we are fitting compared to the nominal and ordinal variables through our newly
extended mixture models with mixed data framework. However, we noticed the nominal and
ordinal variables break down groups that are nearly indistinguishable when only looking at

the different pace variables.

6.2 Future Work

We plan to fit a mixture of Poisson processes to cluster runners based on the number of laps

completed over time. The particular combination with the Poisson process is not well-studied
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or implemented often. This method could turn large scale if found successful. We can further
extend this proposed approach for any application that centers on a count data trajectory
over a certain period of time. We would cluster the actual trajectories of counts. In our
24 hour race application dataset, the number of laps ran is the unit of trajectory. For an
example of another application, we could apply our approach using Poisson process mixtures
to clinical depression scores over time. For instance, the unit in this case could potentially
be the number of episodes the patient has in each time unit. A better understanding of
predicting the different recovery (or non-recovery) trajectories will be very beneficial to both

patients and clinicians.

In addition, we would want to try and see how we could approximate clustMD for higher
than & = 4 or 5. This would involve looking further into the estimation issues and the
problems in the methodologies of defining the nominal variables. We could also look into
how the estimation changes if we change the reference category of the nominal variables. In

addition, it would be useful to do further analysis in mixed memberships models.
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