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Abstract

Human geneticists in the post-genomics era are blessed with unprecedentedly powerful genomic technologies

such as next-generation sequencing to uncover the mysteries of complex human diseases. On the other hand,

nevertheless, new practical and analytical challenges that arise with the technological revolutions abound.

Working in the context of schizophrenia, a neuropsychiatric disease with a strong genetic basis, we take

advantage of genomic datasets produced by modern genomic technologies, as well as novel statistical methods

developed in response to the analytical challenges. Specifically, we apply a new meta-analysis framework –

Detecting Association With Network (DAWN) – to high-dimensional gene expression datasets in an attempt

to identify potential risk genes and sub-networks for schizophrenia. We also address a practical measurement

issue that arises with the transition between different genomic technologies. By proposing a procedure that

transforms datasets measured using two different technologies to achieve comparable measurements, we

combine both data sources, thereby increasing sample size. Using DAWN, we identify a set of 39 primary

risk genes and 44 secondary risk genes. We conclude by visualizing the risk gene network and 6 sub-networks

surrounding the primary risk genes.

Keywords: mapping, genetic association scores, correlation-wise odd pairs, transformation, partial neigh-

borhood selection, parameter tuning, co-expression network, hidden Markov random field, Bayesian false

discovery rate control, risk genes, sub-networks
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1 Introduction

H
uman genetics researchers in the post-genomics era are blessed with unprecedentedly powerful genomic

technologies such as next-generation sequencing to uncover the mysteries of complex human diseases.

For instance, geneticists’ understanding of autisim spectrum disorder (ASD), a neurodevelopmental

disorder with a heritable and complex genetic basis, has been growing rapidly thanks to advancements

in sequencing technology [1, 2]. Through whole-exome sequencing, De Rubeis et al. recently identified

22 autosomal genes implicated for ASD that involve in pathways for synaptic formation, transcriptional

regulation, and chromatin-remodelling, in addition to 107 genes that are strongly enriched [2]. On the

other hand, nevertheless, geneticists face many new challenges, both practical and analytical, that arise with

the technological revolutions. For example, due to incomplete penetrance and modest effects of risk genes

for complex diseases, genome-wide association studies oftentimes require large sample sizes to overcome

limitations of reduced analytical power [3]. However, it remains largely difficult for research groups to

substantially increase their sample sizes as the operational cost to recruit human subjects and collect high-

quality genetic data stays high, even though the cost of sequencing itself has dropped considerably in recent

years. Analytically, the ability to measure the expression of thousands of genes simultaneously can be

harnessed only if accompanied by statistical techniques tailored for high-dimensional settings where the

genes by far outnumber the samples [4]. Moreover, as genes responsible for complex diseases are now widely

believed to function in networks instead of acting in an isolated fashion [5], more sophisticated network-based

analytical schemes are therefore necessary to make meaningful inferences on risk gene networks.

In this project, we take advantage of genomic datasets produced by modern genomic technologies, as well

as novel statistical methods developed in response to the aforementioned analytical challenges. We do so in

the context of schizophrenia, another neuropsychiatric disease for which evidence of a strong genetic basis

has been shown [6]. Specifically, we apply a new meta-analysis framework – Detecting Association With

Network (DAWN) – to high-dimensional gene expression datasets in an attempt to identify potential risk

genes and sub-networks for schizophrenia. In the course of our analysis, we also address a measurement

issue that arises with the transition between different genomic technologies. We propose a procedure that

transforms datasets measured using different technologies to achieve comparable measurements, thereby

making it possible to combine both data sources and increase sample size.
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1.1 Summary of DAWN Framework

Developed by Liu et al., DAWN uses a network-assisted approach to estimate the probability of each gene in

the gene co-expression network being a risk gene [7]. In their paper presenting the debut version of DAWN,

Liu et al. show that DAWN ‘is effective in predicting ASD genes and sub-networks’ and that it ‘successfully

predicts known ASD genes’ [7]. While devised originally in the context of ASD studies, the framework can

be applied to any generic complex disorder or disease with a strong genetic basis. We use in this project

an updated version of DAWN which has not yet been published by the completion of this project [8]. The

framework is based on the assumption that ‘genes expressed at the same developmental period and brain

region, and with highly correlated co-expression, are functionally interrelated and more likely to affect risk’

[8]. It estimates risk gene probabilities through modeling of two types of data: gene co-expression in specific

brain regions and periods of development, and disease-specific genetic association scores [8]. A brief summary

of the new DAWN framework is outlined as follows:

(i) Obtain disease-specific p-value of each gene. This genetic association score serves as marginal evidence

of a gene being a risk gene [8].

(ii) Estimate the gene co-expression network based on measurements of gene expression levels in specific

tissues and periods of development. This step uses a partial neighborhood selection algorithm as

described in Liu et al. to produce a network estimate [8, 9, 10].

(iii) Incorporate the disease-specific genetic association scores from (i) and the co-expression network from

(ii) into a hidden Markov random field model, and estimate its parameters via an iterative algorithm

also described in Liu et al. [8].

(iv) Based on the model from (iii), obtain posterior probability of a gene being a risk gene, while applying

Bayesian false discovery rate control [8, 11].

(v) Risk genes are selected based on a chosen cut-off for their risk probabilities. Their sub-networks, if any,

can be visualized [8].

This thesis is structured in an order that largely matches with the one outlined for the DAWN framework.
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2 Derivation of Schizophrenia-Specific Genetic Scores

D
AWN starts with genetic association scores of genes. These can be presented as p-values or

z-scores. In our writing, we tend to use genetic association scores and p-values interchangeably, with

the understanding that higher scores correspond with smaller p-values and larger z-scores. These scores

are disease-specific and are considered marginal evidence on the likelihood of the genes being risk genes for

the disease in question. The extent of usefulness of these scores, which take into no account of interactions

amongst the genes, is regarded marginal because of the general consensus amongst modern geneticists that

genes behind complex diseases rarely function in an isolated fashion [5]. Nonetheless, they serve as an

appropriate starting point.

For schizophrenia, fortunately, the association scores of 9,444,230 single nucleotide polymorphisms

(SNPs) have recently become available as part of a landmark study conducted by the Schizophrenia

Working Group of the Psychiatric Genomics Consortium (hereafter referred to as PGC). In this

study, ‘128 independent associations spanning 108 conservatively defined loci’ were found to be significantly

associated with schizophrenia [12]. Unfortunately, on the other hand, these scores belong to SNPs, which

are sequence variations at single nucleotide positions in the genome. In order to build on the PGC results

and meet DAWN’s input requirement, we need to derive association scores of the genes from those of the

SNPs. The process to achieve this is illustrated by Figure 2.0.1. With reference to Figure 2.0.1, we first

examine the associations between the SNPs and a given gene, represented by U1..N , and determine if a SNP

is mapped to the gene. Next, we obtain association scores of the SNPs, V1..N , from the PGC data. We then

derive the association score of the gene for schizophrenia, z, based on the association scores of the SNPs

mapped to the gene.

Figure 2.0.1: Mapping of SNPs to Genes and Derivation of Genetic Association Scores of Genes2. After

mapping SNPs to a gene based on eQTL associations (U1...UN ), we derive genetic association score (z) of

the gene based on GWAS association scores (V1..VN ) of the SNPs mapped to the gene.

2Reprinted from He et al. [13], Copyright (2013), with permission from Elsevier.
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2.1 Mapping of SNPs to Genes

Mapping of a SNP to a gene is tissue-specific. That is, the same SNP may or may not be mapped to a gene

depending on the tissue in which their association is being considered. We perform SNP-to-gene mapping

in postmortem human brain tissue. Brain tissue is used, consistent with other genetics studies on ASD

and schizophrenia [1, 2, 12], as the brain is the central organ of the nervous system. Specifically, we use

expression quantitative trait loci (eQTL) data from the CommonMind Consortium. Note that we have

had internal access to and used the eQTL data without SVA elements3 for the Caucasian control subjects

before Release 1 of CommonMind Consortium Data [14], and that the two versions may or may not differ.

The CommonMind data contain q-values of 133,159 trans-eQTL associations and 8,875,306 cis-eQTL as-

sociations, all corrected for multiple testing via false discovery rate (FDR) control. In loose terms, the

q-value of an eQTL association between a SNP and a gene quantifies the significance of their association. If

an association is statistically significant at a given cut-off, the SNP can be considered mapped to the gene.

As visualized in Figure 2.1.1, the distribution of these q-values appears skewed severely to the left.

Figure 2.1.1: Distribution of q-values of All Trans- and Cis-eQTL Associations Combined. The histbox

plot, produced using the sfsmisc package [15] in R [16], visualizes the distribution using a histogram and a

horizontal boxplot. The left end of the boxplot appears as a black block due to many lines being drawn

consecutively, each representing an outlier. The pink dotted line indicates a potential q-value cut-off at 0.05.

3A family of non-autonomous retroelements within the primate lineage.

4



In choosing a cut-off for q-values of the eQTL associations, we experiment with a range of possible cut-offs

from 0.00001 to 0.1. We then compare the number of eQTL associations that are significant at different

cut-offs, in addition to the numbers of unique genes (in terms of Ensembl IDs) and unique SNPs in those

associations. The comparison results are presented in Table 2.1.1 and visualized in Figure 2.1.2. We pick

0.05 to be the cut-off largely out of consideration for having a sufficiently large yet manageable number of

genes and SNPs to work with.

Table 2.1.1: Significant eQTL Associations at Various q-value Cut-offs. To aid in picking a q-value cut-off,

we tally the numbers of significant eQTL associations, and the numbers of unique genes and unique SNPs

involved in those eQTL associations at various cut-offs. we choose a cut-off of 0.05 as it corresponds to a

sufficiently large yet manageable number of genes and SNPs.

Cut-off 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.025 0.05 0.1

# eQTLs 119658 141872 150787 178697 193246 245382 278723 337544 408054 518756

# Genes 843 988 1044 1286 1417 2013 2499 3657 5217 7718

# SNPs 86743 101954 108617 131469 143014 181663 203155 244423 294243 373267

Figure 2.1.2: Distributions of Numbers of Significant eQTL Associations per Gene at Various q-value Cut-

offs. At a given q-value cut-off, the distribution of number of significant eQTL associations per gene is

visualized with a boxplot with and without outliers. While the distributions do not appear too different

without the outliers, outliers in distributions at higher (i.e. more relaxed) cut-offs appear to be greater in

both number and magnitude.
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Imposing 0.05 as the cut-off for q-values of eQTL associations, we have 408,054 significant eQTL associations

remaining, involving 5217 unique genes and 294,243 unique SNPs (Table 2.1.1). We then further screen these

eQTL associations by keeping only those involving SNPs present in the PGC data. This is necessary because

when deriving the genetic association score of a gene, without schizophrenia-specific association score of a

SNP from the PGC data, we will not be able to make use of that SNP even if it has been mapped to the

gene. Out of 294,243 unique SNPs, 261,189 are present in the PGC data. As a small number of unique

genes are mapped solely to SNPs that are not in the PGC data, and are as a result excluded altogether with

those SNPs, we are left with 357,834 significant eQTL associations, mapping 5049 unique genes with 261,189

unique SNPs. The distribution of q-values of the remaining eQTL associations, which appears to be skewed

severely to the right, is shown in Figure 2.1.3.

Figure 2.1.3: Distribution of q-values of eQTL Associations Involving SNPs in PGC Data at a Cut-off of

0.05. At a q-value cut-off of 0.05 and keeping only SNPs that are present in the PGC data, we have 357,834

significant eQTL associations that map 5049 unique genes with 261,189 unique SNPs. The distribution of

q-values below the cut-off is visualized with a histbox plot, produced using the sfsmisc package [15] in R [16].

Skewed severely to the right, it has a large number of outliers with q-values close to 0.05, the lines for which

when drawn consecutively appear as a black block in the horizontal boxplot.
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2.2 Hyper-mapped Genes

In addition to q-values of our final SNP-to-gene mappings (Figure 2.1.3), we are also curious about the

number of SNPs a gene is mapped to based on those q-values. This distribution is shown with and without

outliers in Figures 2.2.1A and 2.2.1B respectively. Focusing on Figure 2.2.1A, the numbers of SNPs that

some genes are mapped to are remarkably large – several genes are mapped to thousands of SNPs. Using

500 as a threshold for the number of SNPs mapped, we denote genes with more than 500 SNP mappings

hyper-mapped genes. This threshold is chosen so as to have a sensible number of hyper-mapped genes to

look at. Details, such as the names, descriptions, and numbers of SNP mappings, of all 102 hyper-mapped

genes are presented in Table 7.1.1 in Supplemental Information 7.1.

(A) With Outliers (B) Without Outliers

Figure 2.2.1: Distribution of Numbers of SNPs Mapped to a Gene. After mapping, this distribution is

visualized in boxplots with and without outliers. Genes with over 500 SNP mappings are considered hyper-

mapped genes.

Upon examining the list, it appears that many of the hyper-mapped genes either are pseudogenes or encode

less ‘interesting’ proteins with regards to schizophrenia, such as zinc finger proteins. Nevertheless, a few of

them – HLA-DQA1, HLA-DRB1, and HLA-C – encode major histocompatibility complexes (MHCs).

MHCs are immune-related protein molecules that form part of epitopes and are therefore pivotal in antigen

presentation. As there has been evidence linking MHCs as risk factors to schizophrenia [17, 18], we will keep

in mind the MHC-encoding hyper-mapped genes as we derive their schizophrenia-specific genetic association

7



scores and as we review our final selection of risk genes for schizophrenia.

2.3 Derivation of Genetic Association Scores

With SNPs mapped to genes, we are ready to derive genetic association scores of the genes, based on

schizophrenia-specific genetic association scores of the SNPs mapped to them. Recall that the genetic

association scores of the SNPs for schizophrenia are quantified as p-values in the PGC data [12]. We convert

these p-values into upper-tailed z-scores to avoid having to work with extremely small numbers. Figure

2.3.1 shows the distribution of z-scores of the SNPs mapped to 500 randomly selected genes. To derive the

schizophrenia-specific, genetics-based p-value of a gene, we take the minimum of the p-values of all the SNPs

mapped to that gene. With reference to Figure 2.3.1, in which each column of z-scores belong to SNPs

mapped to a unique gene, this is equivalent to adopting the largest z-score in a column as the z-score of the

gene to which that column corresponds.

Figure 2.3.1: Distribution of z-scores of SNPs Mapped to 500 Randomly Selected Genes. Each column

represents z-scores of SNPs mapped to a unique gene. Columns alternate in color for visualization. The

yellow dotted line indicates where z = 0 for reference. To derive the genetic association score of a gene, we

adopt the maximum z-score in its corresponding column.

While simple and straightforward, taking the minimum p-value – or equivalently, the maximum z-score –

from those of the SNPs could introduce systematic bias. As illustrated in Figure 2.3.2, the distribution of

z-scores of the genes appears to have shifted to the right, compared to that of the SNPs. This is unsurprising

considering that the z-scores of the genes are derived by always taking the maxima of those of the SNPs,

and that the maxima by definition lie towards the right end of the x-axis. We discuss alternative derivation

methods in Section 5.
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Figure 2.3.2: Density Estimates of z-scores of Genes and z-scores of SNPs. The z-score of a gene is derived

by taking the maximum of the z-scores of the SNPs mapped to the gene. A shift to the right is observed in

the density estimate of z-scores of the genes, suggesting bias introduced by always taking the maximum.

Now that we have finished mapping SNPs to genes and deriving p-values of genes, let us examine the

relationship, if any, between the number of SNP mappings per gene and schizophrenia-specific z-score of the

gene. While Figure 2.3.3A suggests that no particularly interesting pattern exists between the two variables

when the number of SNP mappings is relatively small (≤ log10(500) ≈ 2.7), it becomes clear in Figure

2.3.3B that the hyper-mapped genes – those with over 500 SNP mappings per gene – tend to have larger

z-scores. More specifically, many of their z-scores, including those of the 3 MHC-encoding genes, appear

highly significant at a cut-off of p = 0.01, or equivalently, z = 2.33. We will continue monitoring these genes

as we proceed with downstream DAWN analysis in Section 4.
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(A) All 5049 Genes

.

(B) 102 Hyper-mapped Genes with MHC-encoding Genes

Highlighted

Figure 2.3.3: Number of SNPs Mapped to a Gene vs. z-score of a Gene. The hyper-mapped genes, including

the 3 highlighted MHC-encoding genes, appear to have larger z-scores.

In addition to assigning p-values and z-scores to the genes, we also annotate them with their commonly used

names and descriptions of their functions, based on their Ensembl IDs. This is performed using Ensembl

and its BioMart toolbox [19] with procedures documented in Supplemental Information 7.2.
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3 Gene Expression Data, Regression, and Transformation

T
o estimate the gene co-expression network, we use publicly available gene expression datasets from

the BrainSpan atlas [20]. These datasets measure developmental transcriptomes from brain

tissues using both microarray4 and RNA-seq5 technologies.

3.1 Data Cleaning and Quality Control

We begin with 17,604 measurements of gene expression levels from 492 samples in the microarray dataset,

and 52,376 measurements from 524 samples in the RNA-seq dataset. Each sample represents a brain region

of an individual measured at a certain period of human brain development. The periods are specified and

described in Table 3.1.1.

Table 3.1.1: Periods of Human Brain Development6. Periods are as defined by Kang et al. [21]. Ages

are measured in post-conceptual weeks (PCW), post-natal months (M), and post-natal years (Y). Days are

computed using the formula 7 ∗#PCW , 7 ∗ 38+30 ∗#M , and 7 ∗ 38+365 ∗#Y for ages measured in PCW,

M, and Y respectively. Later, we further restrict our samples to be between ages 8PCW and 12M.

Period Description Age Days

1 Embryonic 4–8 PCW 28–56

2 Early fetal 8–10 PCW 56–70

3 Early fetal 10–13 PCW 70–91

4 Early mid-fetal 13–16 PCW 91–112

5 Early mid-fetal 16–19 PCW 112–133

6 Early mid-fetal 19–24 PCW 133–168

7 Late fetal 24–38 PCW 168–266

8 Neonatal & early infancy 0–6 M 266–446

9 Late infancy 6–12 M 446–626

10 Early childhood 1–6 Y 631–2456

As part of data cleaning, we first filter lowly-expressed genes, defined as those with gene expression values

smaller than 1 in more than half of the samples. As a result, 15,760 measurements remain in the RNA-seq

dataset, while none is excluded from the microarray dataset. Next, we combine multiple reads, if any, for the

4‘Exon microarray summarized to genes’ from http://www.brainspan.org/static/download.html.
5‘RNA-Seq Gencode v10 summarized to genes’ from http://www.brainspan.org/static/download.html.
6Adapted by permission from Macmillan Publishers Ltd: Nature [21], Copyright (2011).
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same gene in the same sample by taking the average of those reads. No multiple reads exist in the RNA-seq

dataset. This leaves us with 16,768 unique genes in the microarray dataset and 15,760 unique genes in the

RNA-seq dataset. Note that we identify genes by their Ensembl IDs rather than Associated Names or Entrez

IDs, consistent with the fact that the CommonMind dataset also identifies genes by Ensembl IDs. Another

advantage of this is that some genes have different Associated Names and/or Entrez IDs in the microarray

and the RNA-seq datasets, even though their Ensembl IDs are the same. Additionally, as the BrainSpan

data are unique in that both microarray and RNA-seq measurements are available, we take advantage of

this fact by using both the microarray and the RNA-seq datasets. A drawback of this, however, is that in

order to have two ‘symmetrical’ datasets – one measured in microarray and the other measured in RNA-seq

– we have to keep only common genes and common samples, and in doing so exclude some samples and

additional unique genes. At this point, we have expression values of 10,969 genes from 433 samples, each

measured using both microarray and RNA-seq.

We further screen the samples for quality. Specifically, we use the same quality control criteria adopted by

Parikshak et al., as their study uses the same BrainSpan datasets as we do [1]. These criteria are outlined

as follows:

(a) Aged between 8 post-conceptual weeks (PCWs) and 12 post-natal months;

(b) Taken from one of the following brain regions7: DFC, VFC, MFC, OFC, M1C, S1C, A1C, IPC, STC,

ITC, and V1C; and

(c) With an RNA integrity number (RIN) of at least 9 for RNA-seq measurements.

Imposing these criteria, we have 139 common samples remaining in the microarray and the RNA-seq datasets.

Moreover, of 10,969 genes, we only keep 2971 for which genetic association scores derived in Section 2.3 are

available. Last but not least, we perform a log-transformation on the RNA-seq expression values using

the formulae log2(v + 1), where v is an expression value measured in RNA-seq. To summarize, we have

microarray and RNA-seq measurements of expression levels of 2971 genes from 139 samples as our finalized

gene expression data.

7See Kang et al. [21] for descriptions of the brain regions.
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3.2 Removal of Age Effect through Regression

We decide to look into any age or gender effect on gene expression levels after failing to obtain a relatively

scale-free co-expression network during preliminary analysis using the gene expression data obtained at the

end of Section 3.1. For each gene, using its gene expression values as response, we attempt to fit linear

regression models with different explanatory variables, ranging from age in terms of period as a single

continuous variable, age in terms of days also as a single continuous variable, gender as a single categorical

variable, to age in terms of period and gender as two explanatory variables, and age in terms of days and

gender as two variables.

As it would be impractical to examine regression diagnostics for all 2971 genes, we select a small subset to

look at. Specifically, in effort to be more representative, we run diagnostics on the aforementioned regression

models for 5 genes with the largest genetic association scores (i.e. smallest p-values) derived in Section 2.3,

5 randomly selected genes with p-values smaller than 0.01, and 5 randomly selected genes with p-values

equal to or greater than 0.01. Due to space limitation, we only show here in Figure 3.2.1 diagnostic plots

for BTN3A2, the gene with the largest genetic association score for schizophrenia. Diagnostic plots for the

rest of the semi-randomly selected genes are presented in Supplemental Information 7.3.

Based on the regression diagnostics, we determine that there is a reasonably linear relationship in most of

the genes examined between age in terms of period and expression values, as well as between age in terms

of days and expression values. We prefer using age in terms of period over age in terms of days as the

explanatory variable, as the residuals vs. fitted values plots and the residuals vs. X values plots appear

more evenly spread out and hence more pattern-less in the case of the former. Gender, on the other hand,

appears to have little effect on the expression values of many of the genes examined. We therefore decide

to remove only the age effect on the expression values of each gene through fitting a linear regression model

of its expression values against the ages in period of its samples, and extracting the residuals for use as the

new expression values with age effect removed. We show in Figure 3.2.2 the distributions of the adjusted

R2 of the regression models for all the genes, which appear to be skewed to the right in the cases of both

microarray and RNA-seq measurements.
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Figure 3.2.1: Regression Diagnostics for BTN3A2. This gene has the largest genetic association score for

schizophrenia. Using expression values as response, diagnostics are shown for models using period, days, and

gender as explanatory variable respectively. Adjusted R2 of models using two explanatory variables are also

shown. 14



(A) Using Microarray Expression Data (B) Using RNA-Seq Expression Data

Figure 3.2.2: Distributions of Adjusted R2 from Linear Regressions Against Period for All Genes. For each

gene, we remove age effect on gene expression by fitting a regression model of its expression values against

the ages in period of its samples, and extracting the residuals for use as new expression values.

3.3 Correlation-wise Odd Pairs

Through preliminary analysis, we also become aware of the existence of pairs of genes whose correlations in

the microarray dataset differ considerably from those in the RNA-seq dataset. That is, let rmicro and rRNA

be the correlation coefficients of expression values of gene A and gene B measured using microarray and

RNA-seq respectively; we find pairs of genes such as gene A and gene B for which the absolute difference in

their correlation coefficients exceeds a non-trivial threshold tCOP:

|rmicro − rRNA| ≥ tCOP . (3.3.1)

While we by no means expect the correlation coefficients of two genes based on their microarray and RNA-

seq measurements to match exactly, the extent of differences we discover is surprising, especially considering

that we are looking at measurements of the same genes from the same samples with the only difference

being the measurement technology. For instance, it would be odd to observe that gene A and gene B are

positively correlated with an rmicro of 0.75 in the microarray dataset, whereas that the same pair of genes

are negatively correlated with an rRNA of −0.68 in the RNA-seq dataset. We therefore call the pairs of genes

that exhibit such unexpected behavior Correlation-wise Odd Pairs (COPs). It follows that any gene
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involved in such a pair is called a COP gene . Furthermore, an ‘active’ COP gene – one that is involved in

a large number of COPs – is called a COP hub.

We perform a global search across all genes and samples for COPs at varying thresholds for the absolute

difference in rmicro and rRNA. The numbers of COPs and COP genes detected at different tCOP ’s are shown

in Figure 3.3.1A. Unsurprisingly, the numbers drop as tCOP increases, indicating that fewer pairs of genes

have very large absolute differences in microarray and RNA-seq correlations. Once we know the identity of

the COP genes and thus the number of COPs a gene is involved in at various tCOP ’s, we select as COP hubs

those genes involved in the largest number of COPs on average across thresholds. In doing so, we identify

10 COP hubs, each involved in over 100 COPs on average. Figure 3.3.1B visualizes the number of COPs

each COP hub is involved in at various thresholds. Details of the COP hubs are presented in Table 7.4.1 in

Supplemental Information 7.4.

(A) Number of COPs and COP Genes vs. Threshold (B) COP Hubs at Various Thresholds

Figure 3.3.1: COPs, COP Genes, and COP Hubs across Thresholds before Transformation. We search for

COPs at various thresholds, and count the numbers of COPs and COP genes to aid in picking a threshold.

We also count the number of COPs that each gene is involved in at various thresholds, and consider those

involved in the largest number of COPs on average to be COP hubs.

Identification of COPs is important at a time where RNA-seq technology is gaining widespread popularity,

yet at the same time microarray technology still offers much potential to be exploited. On the one hand,

RNA-seq technology has been considered by many as an improvement over certain limitations of microarray

technology, such as the latter’s limited coverage tied to probes available [22]. Empirically, several known
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ASD-associated genes such as CDH8 had been excluded in the past when applying DAWN on microarray-

only ASD data, because of poor measurement of these genes using microarray technology. On the other hand,

however, it would be wasteful not to harness the rich biological information embedded in the abundantly

available microarray datasets because of poor measurement of a small percentage of genes. In particular,

suppose that expression of these genes have also been measured using RNA-Seq and with high quality, it

could be useful to ‘correct’ for the poor microarray measurements of these genes based on their more reliable

RNA-seq measurements.

3.4 ‘Fixing’ of COPs via Transformation

Given the ‘symmetric’ nature of our microarray and RNA-seq datasets, we find ourselves in a perfect position

to experiment with the idea of ‘correcting’ for poor microarray measurements of genes based on their high-

quality RNA-seq measurements. Where the microarray correlation of two genes differs from the RNA-seq

correlation for more than a given threshold (i.e. the two genes belong to a COP at a given tCOP ), we

conjecture that such difference is largely due to at least one of the COP genes being poorly measured on

the microarray platform. We consider it reasonable to make this assumption for two reasons. First, we

have imposed rather stringent quality control on the RNA-seq measurements by adopting an RIN threshold

of at least 9 in Section 3.1. It would therefore be much less likely that the genes in our final dataset are

poorly measured on the RNA-seq platform. Second, as previously discussed, RNA-seq technology is generally

regarded as an improvement over microarray technology with less measurement bias [22]. To ‘fix’ COPs by

‘correcting’ for the microarray measurements of COP genes, we propose the following procedures:

1. Gaussianize high-quality RNA-seq measurements via nonparanormal transformation . This is

implemented using the huge package [23] in R [16]. Figure 3.4.1A visualizes the distribution of Gaus-

sianized RNA-seq expression values of the genes in our final dataset.

2. Compute the empirical cumulative distribution function (eCDF) of Gaussianized RNA-seq data

obtained in Step 1.

3. For a given set of COP genes, obtain the corresponding percentiles of the genes in Gaussianized RNA-

seq data, based on the eCDF computed in Step 2.

4. Remove measurements of the given genes from the microarray data, and Gaussianize the remain-

ing microarray data via nonparanormal transformation. Figure 3.4.1B visualizes the distribution of

Gaussianized microarray expression values of the remaining genes. Notice the similarity between the

17



distribution of Gaussianized RNA-seq data (Figure 3.4.1A) and that of Gaussianized microarray data

(Figure 3.4.1B).

5. Using the percentiles obtained in Step 3 and based on Gaussianized microarray data obtained in Step

4, estimate Gaussianized microarray measurements for the given genes.

6. Add Gaussianzied microarray measurements for the given genes estimated in Step 5 back to Gaussian-

ized microarray data obtained in Step 4.

7. Combine Gaussianized RNA-seq data obtained in Step 1 and Gaussianized microarray data containing

‘fixed’ estimates for the given set of COP genes obtained in Step5.

(A) RNA-Seq (B) Microarray

Figure 3.4.1: Distributions of Expression Values after Nonparanormal Transformation. During transforma-

tion, we first Gaussianize high-quality RNA-seq measurements using the huge package [23] in R [16]. After

removing microarray measurements of a given set of COP genes, we Gaussianize the remaining microarray

data. Transformed microarray estimates for the genes removed are obtained based on percentiles of their

transformed RNA-seq measurements and eCDF of Gaussianized RNA-seq data.

To summarize, we first perform a nonparanormal transformation on the RNA-seq measurements to get a

Gaussianized distribution. We then estimate the percentiles of a given set of COP genes in the Gaussianized

RNA-seq distribution. After removing their microarray measurements, we perform a nonparanormal trans-

formation on the remaining microarray data. Next we estimate Gaussianized microarray measurements for

the COP genes using the percentiles and the Gaussianized microarray distribution obtained earlier. Finally,
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we combine Gaussianized RNA-seq data and Gaussianized micorarray data. An advantage of performing

the above-mentioned series of transformation is that the transformed measurements in the end product –

a combined Gaussianized dataset – are all on the same scale, as opposed to separate scales for the original

RNA-seq and microarray measurements. This allows us to increase the sample size by incorporating two

separate sources of data into a single analysis.

In practice, in order to determine a set of COP genes to be ‘fixed’, we first pick a threshold, tCOP , at which

we capture COPs. Upon re-examining Figures 3.3.1A, we decide to choose tCOP = 1.0. This threshold is

not as stringent as tCOP = 1.3, beyond which no more COPs exist. At the same time, it is not as relaxed

as tCOP = 0.7, thus avoiding the need to attempt to ‘fix’ too many (≥ 1000) COP genes. In fact, upon

examining the number of COPs each COP gene is involved in at tCOP = 1.0, we show in Figure 3.4.2 that

there is great unevenness amongst the COP genes in the number of COPs they are each involved in. At

tCOP = 1.0, majority of the COP genes are each involved in no more than 5 COPs. Only a small number

– 50 – of the COP genes are involved in 6 or more COPs. We therefore choose to attempt ‘fixing’ on these

50 COP genes only, the details of which are presented in Table 7.5.1 in Supplemental Information 7.5. Note

that this list of COP genes includes all the across-threshold COP hubs identified in Figure 3.3.1B.

Figure 3.4.2: Number of COPs That Each COP Gene is Involved in at tCOP = 1.0. Majority of the COP

genes are each involved in no more than 5 COPs, whereas only a small number (50) are involved in 6 or

more COPs. The latter 50 are chosen to be ‘fixed’.
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3.5 Comparison of COPs before and after Transformation

We try out the idea of ‘fixing’ COPs via transformation on a set of 50 COP genes. Following transformation,

we again perform searches across all genes and transformed samples for COPs at each tCOP , similar to that

performed before transformation in Section 3.3. The numbers of COPs and COP genes detected – or rather,

persisted – at different tCOP ’s after transformation are shown in Figure 3.5.1A. Again, the numbers drop as

tCOP increases, indicating that fewer pairs of genes have very large absolute differences in their transformed

microarray and transformed RNA-seq correlations. Compared to Figure 3.3.1A, both the number of COPs

and the number of unique COP genes at a given threshold appear to be lower after transformation than

before.

(A) Number of COPs and COP Genes vs. Threshold (B) COP Hubs at Various Thresholds

Figure 3.5.1: COPs, COP Genes, and COP Hubs across Thresholds after Transformation. Similar to the

pre-transformation search, we search again for COPs at various thresholds, and count the numbers of COPs

and COP genes at each threshold. The numbers at a given threshold are lower after transformation than

before. We also count the number of COPs that each gene is involved in at various thresholds, and consider

those involved in the largest number of COPs on average to be COP hubs. Post-transformation COP hubs

have completely different identities and appear less hub-like compared to pre-transformation hubs.

COP hubs, defined as COP genes involved in the largest number of COPs on average across thresholds, are

shown in Figure 3.5.1B, together with the number of COPs each hub is involved in at various thresholds.

Compared to the 10 pre-transformation COP hubs previously identified in Figure 3.3.1B, the 13 post-

transformation COP hubs in Figure 3.5.1B are completely new. This suggests that most, if not all, of the
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pre-transformation COP hubs are no longer hubs across different thresholds, or in other words are ‘fixed’,

by the transformation. As for the new COP hubs that emerge after transformation, their average numbers

of COPs involved in range from 16 to 51, much smaller compared to a range between 101 and 202 before

transformation. Details of the post-transformation COP hubs are presented in Table 7.6.1 in Supplemental

Information 7.6.

Figure 3.5.2: Numerical Comparison of COPs before and after Transformation. Of all the pre-transformation

COPs, majority (91.6%) disappear after transformation, including those involving the 10 pre-transformation

COP hubs. These are considered ‘fixed’. A small fraction (8.4%) of COPs remain after transformation

and are considered ‘persistent’. Of all the post-transformation COPs, 37.1% are ‘newly emerged’ after

transformation, possibly due to intrinsic stochasticity in the measurements.

Furthermore, we conduct a zoomed-in comparison of the COP networks at tCOP = 1.0 before and after

transformation. Figure 3.5.2 provides a numerical summary of this comparison, and Figure 3.5.3 provides

a COP-to-COP visual comparison. Prior to transformation, with reference to Figure 3.5.2, we capture

1276 COPs involving 947 unique COP genes at tCOP = 1.0. A complete network of these 1276 COPs is

visualized in Figure 3.5.3A, with the 50 COP genes picked to be ‘fixed’ in Section 3.4 highlighted in red.

It becomes clear in Figure 3.5.3A that these 50 genes indeed appear to be hub-like as they are involved

in at least 6 and as many as 109 COPs. Following transformation, with reference to Figure 3.5.2, we

identify 170 COPs involving 220 unique COP genes at tCOP = 1.0, this time based on the transformed

data obtained at the end of Section 3.4. That is, as shown in Figure 3.5.3B, majority (91.6%) of the

21



COPs that exist in Figure 3.5.3A disappear. The COPs that disappear after transformation include all of

those involving the 10 across-threshold COP hubs identified in Figure 3.3.1B. In fact, out of the 50 COP

genes picked to be ‘fixed’ – a list that includes the 10 COP hubs, only 6 remain involved in COPs after

transformation. Still highlighted in red in Figure 3.5.3B, they are: SORBS2, BRAF, TAOK1, CEP192,

EIF5A, and NOTCH3. The numbers of COPs that these ‘persistent’ COP genes remain involved in are also

considerably smaller compared to those before transformation. On the other hand, with reference to Figure

3.5.2, a small number of COPs (8.4%) remain after transformation. Additionally, 63 new COPs (Figure

3.5.2) emerge after transformation and are highlighted in yellow in Figure 3.5.3B, representing 37.1% of

the post-transformation COPs. Notwithstanding, none of the persisting old COP genes or the new COP

genes appear nearly as hub-like as the ones highlighted in red in Figure 3.5.3A. It is likely that inherent

stochasticity in the original measurements gives rise to the newly emerged COPs. We therefore consider

‘fixing’ via transformation a success.

We are now ready for downstream DAWN analysis.
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(A) Before Transformation (B) After Transformation

Figure 3.5.3: Visual Comparison of COPs before and after Transformation. All COPs before and after transformation at tCOP = 1.0 are shown in a

node-matched fashion. Pre-transformation COP genes picked for ‘fixing’ in Section 3.4 are colored in red. Of the 50 of them, only 6 ‘persist’ after

transformation. Other pre-transformation COP genes are colored in blue. After transformation, COPs and COP genes that ‘persist’ are colored

as before. Disappearance of pre-transformation COPs or COP genes indicates successful ‘fixing’. COPs and COP genes that newly emerge after

transformation are colored in yellow.
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4 DAWN Analysis

A
s we prepare to run the main DAWN algorithm, let us review our progress into the DAWN framework

outlined in Section 1.1. We have completed Step (i) in Section 2.3, in which we derive genetic

association scores of the genes. In Section 3, we clean and process our gene expression data, and get a

combined dataset containing transformed microarray and RNA-seq measurements of 2971 genes from 139

samples. This has prepared us for Step (ii), to which we now proceed.

4.1 Co-expression Network

In Step (ii) of the DAWN framework, we construct a gene co-expression network based on genetic association

scores of the genes and their correlation amongst each other, using a partial neighborhood selection

(PNS) algorithm [8]. For this purpose, the PNS algorithm requires a threshold for the genetic association

scores, often referred to interchangeably as the p-values; and a threshold for the correlation of gene expression

values. Based on empirical experience and canonical practice in human genetics literature, we adopt 0.1 and

0.7 for the p-value and the correlation thresholds respectively.

In addition, the PNS algorithm requires a regularization parameter , λ, for the sparse lasso regression [9]

that it uses to estimate the network. The DAWN framework supports the choice of a λ between 0 and 1 that

achieves a reasonable tradeoff between a high degree of scale-freeness and moderate sparsity of the resultant

network [8]. The degree of scale-freeness of a given network can be measured using a scale-free criterion

proposed by Zhang and Horvath based on the observation that biological networks tend to be scale-free –

that is, p(k), the probability that a node connects to k other nodes, decays as a power law p(k) ∼ k−γ

(γ > 1) [10]. This criterion, scale-free topology model R2 (SF-R2), is defined as [10]

SF -R2 =

)
corr

]
log p(k)

(
, log k

( ∑2

. (4.1.1)

Ranging between 0 and 1, an SF -R2 of 1 indicates that the network follows the power law perfectly [8]. The

sparsity of the network, on the other hand, can be measured, albeit crudely, by the average number of edges

per node. One could expect a positive correlation between λ and SF -R2, and a negative correlation between

λ and the average number of edges per node. As DAWN is a novel framework for which a canonical choice

of λ is unavailable, we perform parameter tuning for λ while fixing the other two thresholds.

For λ from 0.01 to 0.85 with an increment of 0.01, we run the PNS algorithm and compute the SF -R2’s
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of the corresponding networks. The results are shown in Figure 4.1.1A. Ideally, we would prefer an SF -R2

around 0.9. In this case, with reference to Figure 4.1.1A, that would lead us to pick a λ close to 1, which

might result in an overly sparse network. Based on the results in Figure 4.1.1A, we zoom into a smaller

range of λ that gives relatively large SF -R2’s and measure the sparsity of the corresponding networks. As

suspected, with reference to Figure 4.1.1B, a λ greater than 0.7 tends to result in a network with an SF -R2

around 0.9 but fewer than 1 edge per gene on average. We therefore make a compromise between the degree

of scale-freeness of the network and its sparsity by choosing a λ of 0.61, which results in an estimated gene

co-expression network with 950 genes, 995 edges, an average of 1.05 edges per gene, and an SF -R2 of 0.83.

(A) SF-R2 vs. λ

.

(B) SF-R2 and Average Number of Edges vs. λ over a

Narrower Range

Figure 4.1.1: Parameter Tuning for λ. When estimating the gene co-expression network, we aim to reach a

reasonable trade-off between a high degree of scale-freeness (an SF-R2 of around 0.9) and moderate sparsity

(an average number of edges per gene of around 1.5). Picking a λ of 0.61 (pink dotted line), we obtain a

gene co-expression network estimate with 950 genes, 995 edges, an average of 1.05 edges per gene, and an

SF -R2 of 0.83.

4.2 Hidden Markov Random Field Model

In Steps (iii) of the DAWN framework, we use a hidden Markov random field (HMRF) model to search

for risk genes, based on p-values of the genes and the estimated gene co-expression network. The philosophy

behind this approach stems from the observation that while very few genes have p-values that are significant
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at the genome-wide level, some genes with small p-values appear clustered in the co-expression network [8].

It is considered ‘highly unlikely to happen by chance’ that a gene with a small schizophrenia-specific p-value

has many risk gene neighbors [8].

The HMRF incorporates information embedded in the p-values by converting them to normal z-scores (Zi’s),

and assuming that the z-scores follow a Gaussian mixture distribution, where the mixture membership of Zi

is determined by its hidden state Ii [8]. A true risk gene has a hidden state of 1, whereas a non-risk gene has

a 0. The framework further assumes that Zi with Ii = 0 is normally distributed with mean 0 and variance

σ2
0 , that Zj with Ij = 1 is approximately normally distributed with mean μ and variance σ2

1 , and that Zi

and Zj are conditionally independent given their hidden states Ii and Ij [8]. Expressing the model as

Zi ∼ P (Ii = 0) N(0, σ2
0) + P (Ii = 1) N(μ, σ2

1), (4.2.1)

where σ2
0 , μ, and σ2

1 remain to be estimated, Liu et al. show that this ‘dependence structure reduces to

the dependence of hidden states’ [8]. The latter can be modeled using an Ising model with probability mass

function

P (I = η) ∝ exp
)
bt η + c ηt Ω η

(
for all η ∈ {0, 1}n, (4.2.2)

where b and c are parameters to be estimated; Ω is the binary adjacency matrix of the co-expression network;

and n is the number of genes in the network [8].

The iterative algorithm used to estimate the parameters requires us to know the hidden states of some genes

in order to initialize. These states are also known as seed states. With the true hidden states unknown to

us, we make some educated choices. Of the 950 genes in the network, we assign a fixed hidden state of 1

to 10 of them whose p-values are in the lowest 1%. The rationale is that the marginal evidence presented by

their extremely small p-values is strong enough for us to assume that their true hidden states are 1. These

genes are: RAI1, PCCB, ATAT1, MAPK7, GATAD2A, SRR, SEPT10, BRD2, DDAH2, and LY6G5B.

Additionally, we assign a seed state of 1 to the rest of the 14 genes whose p-values are in the lowest 2.5%.

These genes are: SPA17, LRCH4, WDR55, SCRN3, CISD2, INA, GPD1L, FAM167A, PDE9A, CPT1C,

CXXC5, FAM221A, HSPA1A, and HSPA1B. The hidden states of seed genes could change from iteration to

iteration, whereas fixed hidden states remain unchanged. It should be noted, however, that whether a gene

assigned with a fixed hidden state of 1 gets selected as a risk gene subsequently in Step (iv) depends on its

posterior probability after FDR correction of being a risk gene in relation to that of the other genes.

Initializing the iterative algorithm with the above-mentioned seed states, we obtain after 17 iterations an
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estimate of 1.64 for μ, and an estimate of 0.967 for both σ2
0 and σ2

1 (equal variance is further assumed by

the algorithm for Zi|Ii = 0 and Zj |Ij = 1). In addition, we obtain estimates for b and c as −4.92 and 3.92

respectively. The fact that c > 0 suggests that genes with estimated hidden states of 1 tend to form clusters,

a characteristic that we consider favorably.

In Step (iv), in addition to estimating the parameters of the HMRF model, the algorithm also applies Gibbs

sampling to estimate ppi = P (Ii = 0|Z), the posterior probability that the true hidden state of a gene

is 0 given the z-score distribution of all the genes [8]. Lastly, we apply Bayesian FDR correction [11] to

the posterior probabilities. To do so, we sort ppi’s in ascending order into pp(i)’s, and compute the FDR-

controlled posterior probability (FPP) that the true hidden state of the kth sorted gene is 0 by [8]

FPPk =

k[
i=1

pp(i)

k
. (4.2.3)

Important to note is that the FPP of a gene is the probability of that gene not being a risk gene for

schizophrenia. Hence, the smaller the FPP of a gene is, the more likely that it is a risk gene. FPPs need to

be formulated this way in order to accommodate the requirements of FDR correction.

4.3 Schizophrenia Risk Genes and Sub-networks

In the last step of the DAWN framework, we choose a cut-off for FPPs and select risk genes based on their

posterior probabilities of being a risk gene (recall that smaller FPP means greater probability of being a risk

gene). We show in Figure 4.3.1A the distribution of FPPs of the genes in our network. Because the vast

majority of our genes appear to have rather small FPPs, as indicated by the distribution’s severe skewedness

to the right in Figure 4.3.1A, we anticipate a much smaller cut-off compared to the canonical choice of 0.1

adopted in past applications of the framework. We also show in Figure 4.3.1B the distribution of numbers

of neighbors of each gene. As we are counting all the edges connected to a gene, as opposed to counting only

edges from certain genes, we denote this the number of ‘global neighbors’. With reference to Figure 4.3.1B,

this is again a distribution that skews severely to the right, with a small number of genes having as many as

12 global neighbors and the majority of genes having fewer than 2 global neighbors. In addition, we examine

the bivariate relationship between the FPP of a gene and its number of global neighbors. This is shown in

Figure 4.3.1C. It becomes immediately clear that these two variables correlate negatively. Their correlation

coefficient is −0.71.
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(A) Distribution of FPPs (B) Distribution of Numbers of Global Neighbors

(C) Number of Global Neighbors vs. FPP

Figure 4.3.1: Distributions of FPPs and Numbers of Global Neighbors of Genes in Co-expression Network.

FPP estimates the probability that a gene is not a risk gene. Genes with smaller FPPs are more likely to

be risk genes. The number of global neighbors of a gene counts all of its edges, as opposed to counting only

edges from certain genes. These two variables correlate negatively with a correlation coefficient of −0.71.

Given the severely right-skewed distribution of FPPs (Figure 4.3.1A), what would be a reasonable cut-off?

Instead of choosing an arbitrary number, for instance, 0.01; we consider genes whose FPPs are in the lowest
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10% as small-FPP genes. As we have 950 genes in our co-expression network, there are 95 small-FPP

genes to begin with. Amongst them, 8 are assigned fixed hidden states of 1 for the HMRF model in Section

4.2, and 3 more serve as seed genes with an initial hidden state of 1 (recall that 10 genes are assigned fixed

hidden states of 1 and 14 genes are chosen to be seed genes with an initial hidden state of 1). We further

measure the inter-connectedness of these small-FPP genes by counting their numbers of global neighbors

that are also small-FPP genes. From these 95 small-FPP genes, we select those that fulfill either one of the

following criteria as primary risk genes for schizophrenia:

• The gene is assigned a fixed hidden state of 1 in Section 4.2. That is, it has a convincingly small

genetics-based p-value as well as a small FPP according to the DAWN algorithm.

• The gene is well-connected to other small-FPP genes. That is, it has a small FPP as well as a large

fraction of its global neighbors being also small-FPP genes. Specifically, we consider being ‘well-

connected’ to other small-FPP genes as being in the 75th percentile or higher in terms of the fraction

of global neighbors that are also small-FPP genes.

Using these criteria, we identify 39 primary risk genes from the pool of small-FPP genes. Isolated small-

FPP genes – small-FPP genes that neither are risk genes nor have any small-FPP neighbor – are removed,

as it is our belief that risk genes function together as networks rather than alone. After excluding 12

isolated small-FPP genes, the remaining 44 small-FPP genes are then classified as secondary risk genes

for schizophrenia. To summarize, we obtain a final set of 39 primary risk genes in addition to 44 secondary

risk genes.

We examine the primary and secondary risk genes more closely in Figure 4.3.2, which shows the bivariate

relationship between the genetics-based p-values of these genes and the fractions of their global neighbors

that are risk genes, in addition to being size-coded by the absolute number of risk gene neighbors. Numerical

values of FPPs are not shown since these genes all have small FPPs below a given cut-off. With reference to

Figure 4.3.2, majority of the risk genes lie to the left of the pink dotted line indicating a genetics-based p-value

of 0.1. Equivalently, approximately 80% of the risk genes selected by DAWN have genetics-based p-values

smaller than the p-value threshold adopted for estimating the gene co-expression network in Section 4.1. We

consider this favorably as it is not impossible for the HMRF model to favor assigning hidden states of 1 to

genes with large genetics-based p-values, in which case DAWN results would be at odds with the marginal

evidence represented by the p-values, signaling potential failure(s) during DAWN analysis. With regards

to the fraction of global neighbors that are also risk genes, it is no surprise that all but 3 of the primary
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risk genes have a larger fraction of risk gene neighbors than their secondary counterparts – majority of the

primary risk genes are selected for being well-connected to other small-FPP genes. The 3 primary risk genes

with smaller fractions of risk gene neighbors are selected based on the alternative criterion requiring them

to have been previously assigned a fixed hidden state of 1. More details, such as their names, descriptions,

FPPs, numbers of risk gene neighbors, etc., on the risk genes are presented in Table 7.7.1 in Supplemental

Information 7.7.
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Figure 4.3.2: Fraction of Risk Gene Neighbors vs. Genetics-based p-value of Primary and Secondary Risk

Genes. From a pool of small-FPP genes whose FPPs are in the lowest 10%, we select 39 genes that are

either assigned fixed hidden states of 1 in Section 4.2 or well-connected to other small-FPP genes as primary

risk genes. Isolated small-FPP genes are removed and the remaining 44 genes become secondary risk genes.

Majority (80%) of the risk genes have p-values smaller than 0.1, the threshold used for estimating the gene

co-expression network in Section 4.1, and thus lie to the left of the pink dotted line. Genes with a larger

number of risk gene neighbors are plotted with bigger symbols.

We visualize the network amongst the primary and secondary risk genes themselves in Figure 4.3.3 using

igraph [24]. With reference to Figure 4.3.3, primary risk genes (colored in red) appear by definition to be

more well-connected in general than the secondary risk genes (colored in blue). Within the primary risk
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genes,thereappeartobetwosub-typesbasedonthetypeofgenestheyconnectto.Onesub-typeappearsto

bemorehub-likewithrespecttosecondaryriskgenes,actingasacommonco-expressedneighborforseveral

membersofthelatter. ExamplesincludeCKAP2,ATAT1,andCRMP1. Anothersub-type,examplesof

whichincludeMNT andMAPK7,appearstobemostlyinter-connectedwithotherprimaryriskgenesas

opposedtosecondaryriskgenes. Ofcourse,therearealsosomeprimaryriskgenessuchasPEX19
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Figure4.3.3:NetworkBetweenPrimaryandSecondaryRiskGenes.Primaryandsecondaryriskgenesare

coloredinredandbluerespectively.Theformerappearsmorewell-connectedthanthelatter.Someprimary

riskgenes,suchasCKAP2andATAT1,appeartobemorehub-likewithrespecttosecondaryriskgenes.

OtherslikeMNT andMAPK7 appeartobe moreinter-connectedwithprimaryriskgenesthemselves.
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We also visualize the network amongst primary risk genes and their first-degree neighbors in Figure 4.3.4. In

addition to 39 primary risk genes (colored in red), this network consists of secondary risk genes (colored in

blue) and non-risk genes (colored in gray) that make up a total of 116 first-degree neighbors of the primary

risk genes. Some secondary risk genes, such as SOBP, GM2A, and NMD3 from Figure 4.3.3, are excluded

as they do not connect to and therefore do not form part of a sub-network with any primary risk gene.

While examining Figure 4.3.4, several genes with known association with neuropsychiatric and/or neuro-

logical disorders immediately capture our attention. Amongst them is MAPT, a secondary risk gene that

encodes microtubule-associated protein tau. Aggregation of tau proteins encoded by MAPT has long been

recognized as a feature of tauopathy, a class of neurodegenerative diseases that includes Alzheimer’s disease

[25]. Recently, MAPT expression has been shown to also reduce adult neurogenesis, another characteristic of

tauopathy [25]. Directly connected to MAPT in our network and of interest is ARHGAP33. Also known as

NOMA-GAP, ARHGAP33 has recently been shown to regulate synapse development and social behaviors

that are often altered in neuropsychiatric developmental disorders such as ASD and schizophrenia in a mouse

model [26]. Connecting to ARHGAP33 via MNT is PTPN23, which has been identified as a novel candidate

gene for neurological disorders in a recent whole-exome sequencing study [27]. In addition, NLGN2, which

is an immediate neighbor of PTPN23 and which encodes neuroligin-2, a protein vital for synaptogenesis

and synaptic maturation, has been linked directly to schizophrenia [28]. Evidence suggests that rare muta-

tions of NLGN2 result in defects in GABAergic synapse formation, which may be an important trigger for

schizophrenia [28].

Furthermore, upon visual inspection, with reference to Figure 4.3.4, there appears to be sub-networks

formed around 6 subsets of primary risk genes. Each highlighted in a different background color in Figure

4.3.4, some sub-networks contain only one or two primary risk genes, while others are made up of as many

as 15 primary risk genes.

Last but not least, see Figure 7.8.1 in Supplemental Information 7.8 for a visualization of the complete gene

co-expression network and the positions of the risk genes in this network as predicted by DAWN.
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Figure 4.3.4: Network Between Primary Risk Genes and First-degree Neighbors. 39 primary risk genes, 33

secondary risk genes, and 83 non-risk genes are colored in red, blue, and gray respectively. Some individual

genes that have been linked to neuropsychiatric and/or neurological disorders and that might thus be of

interest include MAPT, ARHGAP33, PTPN23, and NLGN2. Based on visual examination of the network

structure, 6 sub-networks formed around small subsets of primary risk genes are identified and highlighted

in colors. (Genes for which no Associated Names are available in Ensembl are denoted by their Ensembl

IDs.)
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5 Discussion

T
here can be as much art to data analysis as there is science. From mapping, data transformation, to

running through different steps of DAWN, multiple decisions regarding various cut-offs, thresholds,

and parameters are made. While based largely on the objective facts presented by the data, many of these

decisions also involve to varying degrees a subjective component. As a result, there is not a single correct

answer to our question of interest, but instead different alternatives with their own pros and cons. Here, we

reflect issues related to our particular approach, many of which are left as open-ended questions. We also

discuss possible alternatives and future directions.

5.1 Reflections

During mapping of SNPs to genes in Section 2.1, given a SNP and a gene, we consider the q-value of their

eQTL association. In the CommonMind data [14], all of the trans-eQTL associations are unique; and there

is no overlap between trans-eQTL associations and cis-eQTL associations. There are, however, duplicate

cis-eQTL associations. In other words, there are cases where a SNP and a gene have more than one cis-eQTL

q-value available in the data. Fortunately, this is of little concern in our case after examining the distribution

of q-values of the duplicate cis-eQTL associations. As these associations have a minimum q-value of 0.1992,

which is much larger than our adopted q-value cut-off of 0.05, the fact that there are duplicates does not

matter. However, what if the duplicates have q-values below our cut-off and as a result we do have to

take them into account? Do we take the minimum, maximum, or average of the q-values of duplicate eQTL

associations between a SNP and a gene? Do we consider a SNP mapped to a gene if the q-value of one of their

eQTL associations is below the cut-off, while that of a duplicate association is above? More fundamentally,

why are there different q-values of cis-eQTL associations between the same SNP and the same gene in the

first place? We find these questions worth pondering even though they do not directly impact our particular

analysis.

At the end of Section 2.2, we note that we will be looking out for HLA-DQA1, HLA-DRB1, and HLA-C

– the MHC-encoding hyper-mapped genes with large z-scores – as we select risk genes. This has proved

difficult as our final gene expression datasets obtained at the end of Section 3.1 do not contain HLA-DQA1

and HLA-C. HLA-DQA1 is absent in both the original microarray and the original RNA-seq datasets from

BrainSpan [20]. While HLA-C is present in the original microarray dataset, it is missing from the original

RNA-seq dataset. As our data cleaning protocol keeps only genes that are common to both the microarray
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and the RNA-seq datasets, it has effectively excluded HLA-C from our analysis. As for HLA-DRB1, while

it is commonly included in the microarray and the RNA-seq datasets, it is not chosen by DAWN to be part

of the co-expression network estimated in Section 4.1. It therefore does not stand a chance to be selected

as a risk gene for schizophrenia in our analysis. Amongst the risk genes that do get selected, with reference

to Table 7.7.1 in Supplemental Information 7.7, only SMC2 is considered hyper-mapped. Despite being

mapped with 652 SNPs, SMC2 as a secondary risk gene is connected to only 1 risk gene in the DAWN

network.

The fact that some of the genes of potential interest, such as HLA-DQA1 and HLA-C, are excluded from

the final dataset prompts us to re-evaluate our data processing procedures. In particular, we have proposed

to transform datasets measured using two different technologies – microarray and RNA-seq – to achieve

comparable measurements. While doing so increases the sample size, it also requires that genes be present

in both original datasets. As not every gene is measured or has measurements that pass quality control in

both microarray and RNA-seq, some genes inevitably get excluded from the combined post-transformation

dataset. In Section 3.1, for example, there are 16,768 and 15,760 unique genes in the original microarray

and RNA-seq data respectively; but only 10,969 of them are common. The pertinent question to consider is

then, which should we value more, a larger sample which confers more statistical power but which contains

fewer genes, or a smaller sample which confers less power but which may contain more genes of potential

interest?

In addition, we use regression in Section 3.2 to remove age effect from the gene expression measurements and

use the residual values as the new measurements of levels of gene expression. The residual values, however,

center around 0 and can be either positive or negative. Similarly, the post-transformation measurements in

the combined dataset obtained at the end of Section 3.4 also have both positive and negative values centered

around 0. While the negative values do not affect DAWN directly, they could make interpretation of the level

of gene expression of a risk gene difficult. For instance, what does it mean for a risk gene to have a negative

expression value after removal of age effect? What does it mean for a gene to have a post-transformation

expression value of approximately 0?

In Section 3.5, after examining the remaining and newly emerged COPs after transformation, we decide that

‘fixing’ via transformation is a success. We base our judgment largely on the fact the post-transformation

COP genes in Figure 3.5.3B do not appear nearly as hub-like as those in Figure 3.5.3A. For the purpose

of drafting procedures for implementing transformation, however, it might be useful to also consider the

possible scenario in which many pre-transformation COP hubs remain after applying transformation once.
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In that case, what should we do with the persistent COPs and COP hubs? Should we apply transformation

for a second time? Should we keep transforming the data until only a few COPs remain and no COP hubs

exist? Would doing that help at all? In addition, in the event that persistent COP hubs exist even after

transformation, would they appear different from the other genes in the DAWN network? In our set of risk

genes, only TUBB2B is involved in any COP at all after transformation. Similarly unremarkable is that it

is only involved in a single COP at tCOP = 1.0, and is hence certainly not a COP hub.

5.2 Future Directions

The method that we use in Section 2.3 to derive the genetic association scores of the genes may be too

simplistic. By taking the minimum of the p-values for schizophrenia of the SNPs mapped to a gene as the

genetic association score of that gene, we rely on the assumption that the degree of association between a

gene and a disease correlates with that between the disease and the SNP to which the gene has the strongest

association. There is nevertheless little evidence showing that this is always true. In the future, more

sophisticated statistical methods may be adopted to derive these genetic association scores. Some suggested

methods to try include He et al. ’s Sherlock [13] and Conneely and Boehnke’s P Value Adjusted for Correlated

Tests (PACT ) [29].

In addition, while examining the distribution of genetic association scores derived for the genes in Figure

2.3.2 in Section 2.3, we note that bias favoring larger z-scores might be introduced by always taking the

maximum z-score of the SNPs. More specifically, we assume in the HMRF model in Step (iii) of DAWN that

the z-scores of genes with hidden states of 0 follow a normal distribution with mean 0 (Equation 4.2.1 in

Section 4.2); whereas the mean of our derived z-score distribution shown in Figure 2.3.2 has clearly shifted

to the right of 0. One way to adjust for the biased shift in the future would be to adjust the mean of the

normal distribution assumed for z-scores of genes with Ii = 0 in Equation 4.2.1 from 0 to match that of the

actual distribution of z-scores derived for the genes.

Last but not least, there is room for improvement in both detecting and characterizing sub-networks amongst

the primary risk genes. Currently, the sub-networks in Figure 4.3.4 in Section 4.3 are identified by visual

examination for obvious clusters formed around primary risk genes. A more robust way to detect sub-

networks in the future would be to apply a community detection algorithm. Lancichinetti and Fortunato’s

comparative analysis on a wide spectrum of community detection algorithms may provide a good place

to start [30]. After detection of sub-networks, bioinformatics databases such as KEGG [31, 32] may be

consulted to characterize the metabolic functions of individual sub-networks. It might also be useful to
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consider the functions of genes with known association with neuropsychiatric and/or neurological disorders,

such as MAPT and NLGN2 in Figure 4.3.4, in relation to the overall functions of the sub-networks; and

vice versa.
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6 Conclusion

I
n this project, we apply the DAWN framework in an attempt to identify schizophrenia risk genes and

sub-networks. We first derive schizophrenia-specific genetic association scores of the genes. This is

achieved through mapping thousands of SNPs to several thousand genes based on the CommonMind data

[14], and taking advantage of association scores of the SNPs for schizophrenia from the PGC data [12]. In

this process, we identify MHC-encoding hyper-mapped genes with association scores of potential interest.

However, they do not become included in our analysis or selected as risk genes due to reasons discussed in

Section 5.1.

Next, we prepare our gene expression data measured using microarray and RNA-seq from BrainSpan [20].

After removing age effect on gene expression levels using regression, we identify pairs of genes whose gene

expression correlations appear drastically different in microarray and in RNA-seq. Defining them as COPs,

we propose a series of transformation procedures that not only ‘fix’ the majority of the COPs but also render

the microarray and the RNA-seq measurements comparable to each other, thereby increasing sample size.

We then perform parameter tuning for the PNS algorithm, seeking a reasonable trade-off between SF-R2

and sparsity of the resultant co-expression network estimate. Based on the genetic association scores derived

for the genes, and the gene co-expression network, we apply a HMRF model on our gene expression data

combining transformed microarray and RNA-seq measurements. Applying Bayesian FDR control, we obtain

FPPs of the genes in the co-expression network. A small subset of genes is selected as primary and secondary

risk genes. Sub-networks consisting of the primary risk genes are identified and visualized.

Last but not least, we discuss future improvements in Section 5.2 and provide directions for using our code

in Supplemental Information 7.9.
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7 Supplemental Information

7.1 List of Hyper-mapped Genes

Table 7.1.1: Genes Mapped to Over 500 SNPs

Ensembl ID Associated Name Description # SNPs p-value z-score

1 ENSG00000196735 HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 5841 0.00000 9.36165

2 ENSG00000196126 HLA-DRB1 major histocompatibility complex, class II, DR beta 1 5265 0.00000 8.98600

3 ENSG00000205035 RP11-707M1.1 Unknown 3249 0.00127 3.01877

4 ENSG00000214425 LRRC37A4P leucine rich repeat containing 37, member A4, pseudogene 3080 0.00005 3.90312

5 ENSG00000214401 KANSL1-AS1 KANSL1 antisense RNA 1 2995 0.00005 3.90312

6 ENSG00000120071 KANSL1 KAT8 regulatory NSL complex subunit 1 2976 0.00005 3.90312

7 ENSG00000238083 LRRC37A2 leucine rich repeat containing 37, member A2 2938 0.00005 3.90312

8 ENSG00000176681 LRRC37A leucine rich repeat containing 37A 2928 0.00005 3.90312

9 ENSG00000185829 ARL17A ADP-ribosylation factor-like 17A 2906 0.00005 3.90312

10 ENSG00000228696 ARL17B ADP-ribosylation factor-like 17B 2852 0.00009 3.74779

11 ENSG00000266918 RP11-798G7.8 Unknown 2846 0.00005 3.90312

12 ENSG00000204650 CRHR1-IT1 CRHR1 intronic transcript 1 (non-protein coding) 2829 0.00007 3.79801

13 ENSG00000267198 RP11-798G7.6 Unknown 2826 0.00005 3.90312

14 ENSG00000232300 FAM215B family with sequence similarity 215, member B (non-protein coding) 2740 0.00005 3.90312

15 ENSG00000244731 C4A complement component 4A (Rodgers blood group) 2635 0.00000 9.36165

16 ENSG00000265218 RP11-927P21.1 Unknown 2465 0.00019 3.55877

17 ENSG00000204525 HLA-C major histocompatibility complex, class I, C 2333 0.00000 9.39095

18 ENSG00000173295 FAM86B3P family with sequence similarity 86, member B3, pseudogene 2301 0.00000 5.48787

19 ENSG00000216901 AL022393.7 Unknown 1720 0.00000 11.74245

20 ENSG00000226686 LINC01535 long intergenic non-protein coding RNA 1535 1395 0.03794 1.77511

21 ENSG00000163116 STPG2 sperm-tail PG-rich repeat containing 2 1368 0.03757 1.77961

22 ENSG00000187987 ZSCAN23 zinc finger and SCAN domain containing 23 1342 0.00000 11.74245

23 ENSG00000227888 FAM66A family with sequence similarity 66, member A 1258 0.00000 5.48787

24 ENSG00000106610 STAG3L4 stromal antigen 3-like 4 (pseudogene) 1217 0.00100 3.09026

25 ENSG00000234585 CCT6P3 chaperonin containing TCP1, subunit 6 (zeta) pseudogene 3 1191 0.03042 1.87466

26 ENSG00000175170 FAM182B family with sequence similarity 182, member B 1178 0.00235 2.82691
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27 ENSG00000197465 GYPE glycophorin E (MNS blood group) 1141 0.00623 2.49867

28 ENSG00000256274 TAS2R64P taste receptor, type 2, member 64, pseudogene 1141 0.04662 1.67855

29 ENSG00000245958 RP11-33B1.1 Unknown 1127 0.01594 2.14591

30 ENSG00000246448 RP13-578N3.3 Unknown 1122 0.00020 3.54141

31 ENSG00000213462 ERV3-1 endogenous retrovirus group 3, member 1 1115 0.03042 1.87466

32 ENSG00000248828 RP11-673E1.4 Unknown 1111 0.01022 2.31817

33 ENSG00000171084 FAM86JP family with sequence similarity 86, member J, pseudogene 1108 0.00108 3.06869

34 ENSG00000108883 EFTUD2 elongation factor Tu GTP binding domain containing 2 1105 0.00028 3.45125

35 ENSG00000261770 CTC-459F4.1 Unknown 1089 0.02284 1.99834

36 ENSG00000176998 HCG4 HLA complex group 4 (non-protein coding) 1066 0.00000 10.92442

37 ENSG00000170571 EMB embigin 989 0.00000 4.87834

38 ENSG00000249244 RP11-548H18.2 Unknown 982 0.01594 2.14591

39 ENSG00000263142 LRRC37A17P leucine rich repeat containing 37, member A17, pseudogene 977 0.00024 3.49145

40 ENSG00000164669 INTS4P1 integrator complex subunit 4 pseudogene 1 951 0.03042 1.87466

41 ENSG00000206344 HCG27 HLA complex group 27 (non-protein coding) 947 0.00000 6.63578

42 ENSG00000162753 SLC9C2 solute carrier family 9, member C2 (putative) 924 0.00002 4.16394

43 ENSG00000197134 ZNF257 zinc finger protein 257 917 0.00297 2.75163

44 ENSG00000172346 CSDC2 cold shock domain containing C2, RNA binding 911 0.00000 6.76290

45 ENSG00000162782 TDRD5 tudor domain containing 5 900 0.02224 2.00954

46 ENSG00000198039 ZNF273 zinc finger protein 273 892 0.07124 1.46662

47 ENSG00000226314 ZNF192P1 zinc finger protein 192 pseudogene 1 889 0.00000 11.37983

48 ENSG00000237636 ANKRD26P3 ankyrin repeat domain 26 pseudogene 3 889 0.04727 1.67192

49 ENSG00000182722 SEPHS1P1 selenophosphate synthetase 1 pseudogene 1 866 0.07124 1.46662

50 ENSG00000248044 ENSG00000248044 Unknown 830 0.01449 2.18376

51 ENSG00000172687 ZNF738 zinc finger protein 738 823 0.00004 3.94578

52 ENSG00000215146 RP11-313J2.1 Unknown 818 0.02854 1.90270

53 ENSG00000168038 ULK4 unc-51 like kinase 4 810 0.09477 1.31194

54 ENSG00000171806 METTL18 methyltransferase like 18 771 0.00881 2.37342

55 ENSG00000259905 PWRN1 Prader-Willi region non-protein coding RNA 1 754 0.12330 1.15865

56 ENSG00000182362 YBEY ybeY metallopeptidase (putative) 748 0.00070 3.19416

57 ENSG00000221947 XKR9 XK, Kell blood group complex subunit-related family, member 9 738 0.04793 1.66526

58 ENSG00000100413 POLR3H polymerase (RNA) III (DNA directed) polypeptide H (22.9kD) 736 0.00000 6.76290

59 ENSG00000108384 RAD51C RAD51 paralog C 721 0.00035 3.38794

60 ENSG00000156253 RWDD2B RWD domain containing 2B 694 0.00160 2.94765
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61 ENSG00000186470 BTN3A2 butyrophilin, subfamily 3, member A2 694 0.00000 10.65362

62 ENSG00000136824 SMC2 structural maintenance of chromosomes 2 652 0.04768 1.66778

63 ENSG00000113593 PPWD1 peptidylprolyl isomerase domain and WD repeat containing 1 650 0.00872 2.37738

64 ENSG00000226752 PSMD5-AS1 PSMD5 antisense RNA 1 (head to head) 650 0.00074 3.17682

65 ENSG00000235109 ZSCAN31 zinc finger and SCAN domain containing 31 650 0.00000 9.55620

66 ENSG00000182632 CCNYL2 cyclin Y-like 2, pseudogene 647 0.02854 1.90270

67 ENSG00000255556 RP11-351I21.6 Unknown 646 0.00003 4.00279

68 ENSG00000214776 RP11-726G1.1 Unknown 641 0.00700 2.45747

69 ENSG00000185904 LINC00839 long intergenic non-protein coding RNA 839 625 0.09001 1.34069

70 ENSG00000176390 CRLF3 cytokine receptor-like factor 3 619 0.00054 3.26907

71 ENSG00000197279 ZNF165 zinc finger protein 165 613 0.00000 8.48790

72 ENSG00000215190 LINC00680 long intergenic non-protein coding RNA 680 607 0.00515 2.56532

73 ENSG00000165055 METTL2B methyltransferase like 2B 601 0.01171 2.26651

74 ENSG00000163576 EFHB EF-hand domain family, member B 597 0.00024 3.49470

75 ENSG00000137513 NARS2 asparaginyl-tRNA synthetase 2, mitochondrial (putative) 589 0.00598 2.51326

76 ENSG00000138829 FBN2 fibrillin 2 589 0.02792 1.91228

77 ENSG00000160321 ZNF208 zinc finger protein 208 588 0.11170 1.21754

78 ENSG00000214198 RP11-642P15.1 Unknown 584 0.00026 3.46512

79 ENSG00000111801 BTN3A3 butyrophilin, subfamily 3, member A3 581 0.00000 10.65362

80 ENSG00000198496 NBR2 neighbor of BRCA1 gene 2 (non-protein coding) 580 0.00090 3.12250

81 ENSG00000228716 DHFR dihydrofolate reductase 576 0.04137 1.73500

82 ENSG00000214435 AS3MT arsenite methyltransferase 573 0.00000 8.50303

83 ENSG00000117481 NSUN4 NOP2/Sun domain family, member 4 564 0.08775 1.35474

84 ENSG00000266490 CTD-2349P21.9 Unknown 556 0.00054 3.26907

85 ENSG00000154319 FAM167A family with sequence similarity 167, member A 551 0.00000 4.54644

86 ENSG00000125804 FAM182A family with sequence similarity 182, member A 547 0.01722 2.11488

87 ENSG00000152117 AC093838.4 Unknown 546 0.02243 2.00596

88 ENSG00000219392 RP1-265C24.5 Unknown 530 0.00000 9.96241

89 ENSG00000261556 SMG1P7 SMG1 pseudogene 7 530 0.00193 2.88987

90 ENSG00000173930 SLCO4C1 solute carrier organic anion transporter family, member 4C1 527 0.00000 4.94237

91 ENSG00000164037 SLC9B1 solute carrier family 9, subfamily B (NHA1, cation proton antiporter 1), member 1 526 0.00000 4.45148

92 ENSG00000250120 PCDHA10 protocadherin alpha 10 525 0.00000 4.92228

93 ENSG00000108592 FTSJ3 FtsJ homolog 3 (E. coli) 524 0.00227 2.83770

94 ENSG00000204267 TAP2 transporter 2, ATP-binding cassette, sub-family B (MDR/TAP) 523 0.00000 8.34973
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95 ENSG00000013573 DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 520 0.00591 2.51759

96 ENSG00000146530 VWDE von Willebrand factor D and EGF domains 517 0.00230 2.83406

97 ENSG00000198874 TYW1 tRNA-yW synthesizing protein 1 homolog (S. cerevisiae) 517 0.22990 0.73918

98 ENSG00000180185 FAHD1 fumarylacetoacetate hydrolase domain containing 1 513 0.00005 3.90338

99 ENSG00000086991 NOX4 NADPH oxidase 4 510 0.03092 1.86744

100 ENSG00000159712 ANKRD18CP ankyrin repeat domain 18C, pseudogene 506 0.20100 0.83805

101 ENSG00000168803 ADAL adenosine deaminase-like 502 0.00381 2.66819

102 ENSG00000176927 EFCAB5 EF-hand calcium binding domain 5 501 0.00025 3.48022
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7.2 Annotation of Genes Using Ensembl

Annotation of genes with their common names, descriptions, and possibly other information can be achieved

using the BioMart toolbox of the databse Ensembl8 [19]. The procedures are shown in Figures 7.2.1 through

7.2.4.

Figure 7.2.1: Using BioMart – Step 1: Choose a Dataset. We select the latest release of Ensembl (Ensembl

Genes 79) and restrict the genes in the database to those of human.

Figure 7.2.2: Using BioMart – Step 2: Upload a List of Ensembl IDs as Filter. We supply to Ensembl a text

file containing a list of Ensembl IDs only. Each row of the file should be an Ensembl ID. No other characters

or symbols should be included. This file may be created using the R function write.table with arguments

row.names=F, col.names=F, quote=F.

8http://www.ensembl.org/biomart/martview/
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Figure 7.2.3: Using BioMart – Step 3: Select Desired Attributes. For our purpose, we only need the original

Ensembl IDs (Ensembl Gene IDs), common names (Associated Gene Names), and descriptions of the gene

functions (Descriptions) in the annotated file. Check more options if necessary.

Figure 7.2.4: Using BioMart – Step 4: Export Annotations as a csv File. We check the box for ‘Unique

results only’ to avoid duplicate entries in the annotation file. The resultant csv file may be read using the

R function read.csv with arguments header=T, stringsAsFactors=F.

Note that not every Ensembl ID has an entry in Ensembl. After reading in the annotation file, Ensembl

50



IDs for which no annotation is available can be annotated as such using relevant code in mapping.R (See

Supplemental Information 7.9).

7.3 Regression Diagnostics

In addition to diagnostic plots (Figure 3.2.1) for BTN3A2, the gene with the largest genetic association score

(i.e. smallest p-value) for schizophrenia, we present diagnostic plots for another 14 semi-randomly selected

genes. They are:

• 4 genes with the smallest p-values other than BTN3A2 : ZSCAN31, HLA-DRB1, CCHCR1, and

WBP1L;

• 5 randomly selected genes with p-values smaller than 0.01: SMCR8, TRIM65, SOBP, JTB, and

C15orf57 ; and

• 5 randomly selected genes with p-values equal to or greater than 0.01: ADAM19, VAT1, SLA, KLF13,

and SPAG16.
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7.4 List of COP Hubs before Transformation

Table 7.4.1: Genes Involved in Most COPs on Average across Thresholds before Transformation

Ensembl ID Associated Name Description p-value Avg #COPs

1 ENSG00000075415 SLC25A3 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 0.10630 202

2 ENSG00000173848 NET1 neuroepithelial cell transforming 1 0.87420 188

3 ENSG00000144741 SLC25A26 solute carrier family 25 (S-adenosylmethionine carrier), member 26 0.02026 164

4 ENSG00000143882 ATP6V1C2 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2 0.18060 147

5 ENSG00000205246 RPSAP58 ribosomal protein SA pseudogene 58 0.25290 141

6 ENSG00000178233 TMEM151B transmembrane protein 151B 0.00009 120

7 ENSG00000188612 SUMO2 small ubiquitin-like modifier 2 0.10030 120

8 ENSG00000110092 CCND1 cyclin D1 0.20620 107

9 ENSG00000008226 DLEC1 deleted in lung and esophageal cancer 1 0.04607 106

10 ENSG00000173406 DAB1 Dab, reelin signal transducer, homolog 1 (Drosophila) 0.67540 101

7.5 List of COP Genes for ‘Fixing’ via Transformation

Table 7.5.1: Genes to be ‘Fixed’ in Microarray Data via Transformation

Ensembl ID Associated Name # COPs Fraction p-value Description

1 ENSG00000075415 SLC25A3 109 0.037 0.10630 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3

2 ENSG00000144741 SLC25A26 99 0.033 0.02026 solute carrier family 25 (S-adenosylmethionine carrier), member 26

3 ENSG00000173848 NET1 95 0.032 0.87420 neuroepithelial cell transforming 1

4 ENSG00000143882 ATP6V1C2 65 0.022 0.18060 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2

5 ENSG00000205246 RPSAP58 62 0.021 0.25290 ribosomal protein SA pseudogene 58

6 ENSG00000188612 SUMO2 56 0.019 0.10030 small ubiquitin-like modifier 2

7 ENSG00000178233 TMEM151B 46 0.015 0.00009 transmembrane protein 151B

8 ENSG00000008226 DLEC1 35 0.012 0.04607 deleted in lung and esophageal cancer 1

9 ENSG00000110092 CCND1 34 0.011 0.20620 cyclin D1

10 ENSG00000213199 ASIC3 28 0.009 0.32670 acid sensing (proton gated) ion channel 3
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11 ENSG00000173406 DAB1 27 0.009 0.67540 Dab, reelin signal transducer, homolog 1 (Drosophila)

12 ENSG00000171530 TBCA 26 0.009 0.57790 tubulin folding cofactor A

13 ENSG00000083457 ITGAE 23 0.008 0.21320 integrin, alpha E (antigen CD103, human mucosal

lymphocyte antigen 1; alpha polypeptide)

14 ENSG00000005882 PDK2 22 0.007 0.09860 pyruvate dehydrogenase kinase, isozyme 2

15 ENSG00000164587 RPS14 20 0.007 0.08469 ribosomal protein S14

16 ENSG00000075826 SEC31B 18 0.006 0.09235 SEC31 homolog B (S. cerevisiae)

17 ENSG00000122033 MTIF3 16 0.005 0.02986 mitochondrial translational initiation factor 3

18 ENSG00000154556 SORBS2 15 0.005 0.06234 sorbin and SH3 domain containing 2

19 ENSG00000157764 BRAF 14 0.005 0.22110 B-Raf proto-oncogene, serine/threonine kinase

20 ENSG00000204366 ZBTB12 14 0.005 0.01791 zinc finger and BTB domain containing 12

21 ENSG00000012822 CALCOCO1 13 0.004 0.14440 calcium binding and coiled-coil domain 1

22 ENSG00000204301 NOTCH4 13 0.004 0.67870 notch 4

23 ENSG00000205758 CRYZL1 13 0.004 0.56880 crystallin, zeta (quinone reductase)-like 1

24 ENSG00000122484 RPAP2 12 0.004 0.12760 RNA polymerase II associated protein 2

25 ENSG00000104728 ARHGEF10 11 0.004 0.21490 Rho guanine nucleotide exchange factor (GEF) 10

26 ENSG00000138385 SSB 11 0.004 0.96180 Sjogren syndrome antigen B (autoantigen La)

27 ENSG00000197417 SHPK 11 0.004 0.01575 sedoheptulokinase

28 ENSG00000070269 TMEM260 9 0.003 0.18020 transmembrane protein 260

29 ENSG00000101473 ACOT8 9 0.003 0.84160 acyl-CoA thioesterase 8

30 ENSG00000154099 DNAAF1 9 0.003 0.20460 dynein, axonemal, assembly factor 1

31 ENSG00000160551 TAOK1 9 0.003 0.75440 TAO kinase 1

32 ENSG00000091009 RBM27 8 0.003 0.91360 RNA binding motif protein 27

33 ENSG00000100632 ERH 8 0.003 0.92620 enhancer of rudimentary homolog (Drosophila)

34 ENSG00000101639 CEP192 8 0.003 0.18820 centrosomal protein 192kDa

35 ENSG00000120314 WDR55 8 0.003 0.00000 WD repeat domain 55

36 ENSG00000132507 EIF5A 8 0.003 0.36200 eukaryotic translation initiation factor 5A

37 ENSG00000138430 OLA1 8 0.003 0.00027 Obg-like ATPase 1

38 ENSG00000164039 BDH2 8 0.003 0.00809 3-hydroxybutyrate dehydrogenase, type 2

39 ENSG00000171928 TVP23B 8 0.003 0.00229 trans-golgi network vesicle protein 23 homolog B (S. cerevisiae)

40 ENSG00000196715 VKORC1L1 8 0.003 0.69310 vitamin K epoxide reductase complex, subunit 1-like 1

41 ENSG00000116171 SCP2 7 0.002 0.17110 sterol carrier protein 2

42 ENSG00000161010 C5orf45 7 0.002 0.85500 chromosome 5 open reading frame 45

43 ENSG00000165660 FAM175B 7 0.002 0.32490 family with sequence similarity 175, member B
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44 ENSG00000074181 NOTCH3 6 0.002 0.51180 notch 3

45 ENSG00000078304 PPP2R5C 6 0.002 0.26430 protein phosphatase 2, regulatory subunit B’, gamma

46 ENSG00000127022 CANX 6 0.002 0.01363 calnexin

47 ENSG00000133739 LRRCC1 6 0.002 0.22340 leucine rich repeat and coiled-coil centrosomal protein 1

48 ENSG00000154134 ROBO3 6 0.002 0.05006 roundabout, axon guidance receptor, homolog 3 (Drosophila)

49 ENSG00000159884 CCDC107 6 0.002 0.39380 coiled-coil domain containing 107

50 ENSG00000163933 RFT1 6 0.002 0.32330 RFT1 homolog (S. cerevisiae)

7.6 List of COP Hubs after Transformation

Table 7.6.1: Genes Involved in Most COPs on Average across Thresholds after Transformation

Ensembl ID Associated Name Description p-value Avg #COPs

1 ENSG00000237984 PTENP1 phosphatase and tensin homolog pseudogene 1 (functional) 0.39090 51

2 ENSG00000106610 STAG3L4 stromal antigen 3-like 4 (pseudogene) 0.00100 44

3 ENSG00000130876 SLC7A10 solute carrier family 7 (neutral amino acid transporter light chain, asc system), member 10 0.38950 44

4 ENSG00000215908 CROCCP2 ciliary rootlet coiled-coil, rootletin pseudogene 2 0.02624 44

5 ENSG00000168818 STX18 syntaxin 18 0.87590 42

6 ENSG00000106682 EIF4H eukaryotic translation initiation factor 4H 0.22450 40

7 ENSG00000197785 ATAD3A ATPase family, AAA domain containing 3A 0.60220 39

8 ENSG00000184313 MROH7 maestro heat-like repeat family member 7 0.25480 22

9 ENSG00000109536 FRG1 FSHD region gene 1 0.64450 19

10 ENSG00000157426 AASDH aminoadipate-semialdehyde dehydrogenase 0.06103 17

11 ENSG00000144589 STK11IP serine/threonine kinase 11 interacting protein 0.90580 16

12 ENSG00000146828 SLC12A9 solute carrier family 12, member 9 0.02037 16

13 ENSG00000239857 GET4 golgi to ER traffic protein 4 homolog (S. cerevisiae) 0.21970 16
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7.7 List of Primary and Secondary Risk Genes

Table 7.7.1: Potential Primary and Secondary Risk Genes in Schizophrenia Gene Co-expression Network

Associated Name Description Genetics- FDR-ctrl. Risk Gene Global Risk Gene Type Fixed Seed

based Posterior Neighbors Neighbors Neighbors Hidden Gene?

p-value Probability (#) (#) (Fraction) State?

1 MNT MAX network transcriptional repressor 0.06100 2.113E-08 5 5 1.000 Primary

2 CHERP calcium homeostasis endoplasmic reticulum protein 0.06342 1.303E-11 4 7 0.571 Primary

3 TAF1C TATA box binding protein (TBP)-associated factor, 0.03001 1.050E-08 3 5 0.600 Primary

RNA polymerase I, C, 110kDa

4 PRKD2 protein kinase D2 0.01235 4.805E-09 3 6 0.500 Primary

5 ZMIZ1 zinc finger, MIZ-type containing 1 0.00976 5.264E-14 5 9 0.556 Primary

6 RAI1 retinoic acid induced 1 0.00000 9.305E-08 1 3 0.333 Primary Yes Yes

7 LGALS3BP lectin, galactoside-binding, soluble, 3 binding protein 0.02409 8.612E-09 3 5 0.600 Primary

8 PCCB propionyl CoA carboxylase, beta polypeptide 0.00000 1.147E-08 1 5 0.200 Primary Yes Yes

9 CRYZ crystallin, zeta (quinone reductase) 0.04943 9.346E-12 4 7 0.571 Primary

10 QRICH2 glutamine rich 2 0.02388 7.787E-09 5 5 1.000 Primary

11 TSPAN2 tetraspanin 2 0.02686 1.795E-10 4 6 0.667 Primary

12 CKAP2 cytoskeleton associated protein 2 0.00129 2.943E-11 3 6 0.500 Primary

13 TUBB2A tubulin, beta 2A class IIa 0.00493 1.116E-07 2 4 0.500 Primary

14 ATAT1 alpha tubulin acetyltransferase 1 0.00000 2.187E-11 2 6 0.333 Primary Yes Yes

15 PRPSAP2 phosphoribosyl pyrophosphate synthetase-associated protein 2 0.00006 2.255E-08 2 4 0.500 Primary

16 PEX19 peroxisomal biogenesis factor 19 0.05562 1.114E-11 4 8 0.500 Primary

17 MAPK7 mitogen-activated protein kinase 7 0.00000 1.242E-07 2 3 0.667 Primary Yes Yes

18 SRR serine racemase 0.00000 2.775E-08 1 3 0.333 Primary Yes Yes

19 PGM2 phosphoglucomutase 2 0.00060 1.229E-09 4 5 0.800 Primary

20 C11orf80 chromosome 11 open reading frame 80 0.00220 7.038E-08 2 4 0.500 Primary

21 CCDC57 coiled-coil domain containing 57 0.07278 1.885E-13 4 8 0.500 Primary

22 KRBA2 KRAB-A domain containing 2 0.00062 1.351E-09 4 6 0.667 Primary

23 BCL9L B-cell CLL/lymphoma 9-like 0.09670 6.312E-10 5 6 0.833 Primary

24 SEPT10 septin 10 0.00000 2.058E-09 1 4 0.250 Primary Yes Yes

25 ZFP69 ZFP69 zinc finger protein 0.00333 1.013E-07 3 4 0.750 Primary

26 FAM114A1 family with sequence similarity 114, member A1 0.03814 2.624E-10 3 6 0.500 Primary

27 BRD2 bromodomain containing 2 0.00000 7.058E-10 2 4 0.500 Primary Yes Yes

28 DDAH2 dimethylarginine dimethylaminohydrolase 2 0.00000 1.129E-15 1 8 0.125 Primary Yes Yes

29 ARFGAP3 ADP-ribosylation factor GTPase activating protein 3 0.00639 2.751E-09 4 5 0.800 Primary

30 CRMP1 collapsin response mediator protein 1 0.37980 2.377E-14 5 9 0.556 Primary

31 NLGN2 neuroligin 2 0.35080 1.163E-12 4 8 0.500 Primary

32 ENSG00000105663 Unknown 0.15490 3.897E-13 6 8 0.750 Primary

33 KLF11 Kruppel-like factor 11 0.30700 8.474E-08 3 5 0.600 Primary

34 PTPN23 protein tyrosine phosphatase, non-receptor type 23 0.24070 1.702E-09 4 6 0.667 Primary

35 ITGA6 integrin, alpha 6 0.27210 5.674E-08 3 5 0.600 Primary

36 RNF219 ring finger protein 219 0.14960 9.938E-10 3 6 0.500 Primary

37 ARHGAP33 Rho GTPase activating protein 33 0.15490 1.104E-09 5 6 0.833 Primary

38 FKBP10 FK506 binding protein 10, 65 kDa 0.68650 1.340E-08 3 6 0.500 Primary
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39 MRC2 mannose receptor, C type 2 0.13390 8.835E-10 4 6 0.667 Primary

40 CENPQ centromere protein Q 0.00317 2.333E-09 2 5 0.400 Secondary

41 SPA17 sperm autoantigenic protein 17 0.00002 2.208E-10 1 6 0.167 Secondary Yes

42 NKAIN1 Na+/K+ transporting ATPase interacting 1 0.00019 7.833E-10 2 5 0.400 Secondary

43 MICALL1 MICAL-like 1 0.02546 5.149E-12 3 7 0.429 Secondary

44 NINL ninein-like 0.00516 0.000E+00 5 12 0.417 Secondary

45 ANKMY2 ankyrin repeat and MYND domain containing 2 0.07881 5.534E-10 2 8 0.250 Secondary

46 ENSG00000108292 Unknown 0.00134 1.873E-09 1 5 0.200 Secondary

47 DUSP16 dual specificity phosphatase 16 0.00016 3.363E-08 1 5 0.200 Secondary

48 SOBP sine oculis binding protein homolog (Drosophila) 0.00453 7.252E-11 2 7 0.286 Secondary

49 COMMD2 COMM domain containing 2 0.02992 9.572E-09 1 6 0.167 Secondary

50 RPL22 ribosomal protein L22 0.03012 7.585E-12 2 7 0.286 Secondary

51 PILRB paired immunoglobin-like type 2 receptor beta 0.03325 0.000E+00 3 11 0.273 Secondary

52 SIN3B SIN3 transcription regulator family member B 0.08825 1.553E-11 2 7 0.286 Secondary

53 IVD isovaleryl-CoA dehydrogenase 0.01107 4.227E-09 1 5 0.200 Secondary

54 NDUFA2 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa 0.00154 3.717E-11 1 9 0.111 Secondary

55 SMC2 structural maintenance of chromosomes 2 0.04768 1.577E-08 1 5 0.200 Secondary

56 ENSG00000141140 Unknown 0.00101 5.028E-08 1 4 0.250 Secondary

57 PCTP phosphatidylcholine transfer protein 0.05615 3.634E-10 1 6 0.167 Secondary

58 GIGYF1 GRB10 interacting GYF protein 1 0.02037 2.576E-12 1 7 0.143 Secondary

59 GPD1L glycerol-3-phosphate dehydrogenase 1-like 0.00001 6.394E-12 1 6 0.167 Secondary Yes

60 ATAD2 ATPase family, AAA domain containing 2 0.09316 2.969E-08 1 7 0.143 Secondary

61 DPYSL5 dihydropyrimidinase-like 5 0.00034 0.000E+00 4 10 0.400 Secondary

62 PCNT pericentrin 0.00131 4.163E-16 3 11 0.273 Secondary

63 APOA1BP apolipoprotein A-I binding protein 0.01591 5.480E-09 1 6 0.167 Secondary

64 MTMR10 myotubularin related protein 10 0.00787 3.216E-09 1 6 0.167 Secondary

65 LMBRD1 LMBR1 domain containing 1 0.00005 1.834E-08 1 5 0.200 Secondary

66 SEPT2 septin 2 0.01460 1.449E-10 2 6 0.333 Secondary

67 NMD3 NMD3 ribosome export adaptor 0.00199 6.343E-08 1 6 0.167 Secondary

68 KDELC2 KDEL (Lys-Asp-Glu-Leu) containing 2 0.04949 1.701E-08 2 5 0.400 Secondary

69 GPATCH8 G patch domain containing 8 0.01116 1.226E-10 2 6 0.333 Secondary

70 MAPT microtubule-associated protein tau 0.00114 6.732E-13 2 7 0.286 Secondary

71 GM2A GM2 ganglioside activator 0.07415 2.418E-08 1 6 0.167 Secondary

72 ECI2 enoyl-CoA delta isomerase 2 0.00050 4.209E-08 1 5 0.200 Secondary

73 L3MBTL3 l(3)mbt-like 3 (Drosophila) 0.07808 4.883E-10 2 6 0.333 Secondary

74 TRIM13 tripartite motif containing 13 0.02148 3.854E-12 3 7 0.429 Secondary

75 EMP2 epithelial membrane protein 2 0.04659 3.098E-10 3 7 0.429 Secondary

76 KCTD7 potassium channel tetramerization domain containing 7 0.08272 2.598E-08 3 7 0.429 Secondary

77 MDM4 MDM4, p53 regulator 0.10800 3.578E-08 2 5 0.400 Secondary

78 ANXA11 annexin A11 0.23360 1.526E-09 2 6 0.333 Secondary

79 IL6ST interleukin 6 signal transducer 0.76910 1.972E-08 2 6 0.333 Secondary

80 SLA Src-like-adaptor 0.40050 8.528E-11 1 7 0.143 Secondary

81 HN1 hematological and neurological expressed 1 0.48060 1.033E-10 2 7 0.286 Secondary

82 TUBB2B tubulin, beta 2B class IIb 0.31210 4.710E-11 3 7 0.429 Secondary

83 LGALS8 lectin, galactoside-binding, soluble, 8 0.16750 4.552E-08 2 5 0.400 Secondary
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7.8 CompleteDAWNNetwork

Figure7.8.1:CompleteDAWNNetwork. AllgenesandedgesselectedbyDAWNareshown. Genenames

areomittedduetospacelimitation.Primaryriskgenesarecoloredinred,secondaryriskgenesarecolored

inblue,andnon-riskgenesarecoloredingray.
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7.9 Code

All computing is performed in R [16]. Code is available for those with access on Uber Genno. Table 7.9.1

shows the scripts used for different sections. Scripts for DAWN’s source code are written by Dr. Li Liu [8]

and denoted with * in Table 7.9.1. Note that source scalef.R contains a function to compute the SF −R2

that is not available in source DAWN PNS HMRF.R, the latest DAWN source code as of May 2015. In addition,

source modified dawn main.R contains a slightly modified version of the function DAWN main addTF from

source DAWN PNS HMRF.R. The modified version corrects a small numerical problem in the original function

that produces NaN for posterior probabilities when the input p-values are too small. All other scripts for the

analysis are written by the author.

Table 7.9.1: Code by Section

Section R Script

2.1, 2.2, 2.3 mapping.R

3.1 data prep.R

3.2 data regress.R

3.3, 3.4 data transform part1.R

3.5 data transform part2.R

4.1 dawn pick lambda.R

source DAWN PNS HMRF.R*

source scalef.R*

4.2, 4.3 dawn main.R

source DAWN PNS HMRF.R*

source modified dawn main.R*
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THE END
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