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Introduction
              Engineering design is a complex domain in which a number of processes and people interact to
produce the desired product.  Throughout the design process engineers utilize a large body of personal
experience and design knowledge in order to create a functioning device.  It is almost impossible to imagine a
skilled engineer attempting to solve a problem without relying on some form of previous domain knowledge.
Exactly how they accumulate this knowledge and later decide to use it in a design problem is not known, but
these processes can be explored using tools and methods from cognitive psychology.
              The amount of domain knowledge and experience, as well as the organization of this information, in
memory is one of the main differences between expert and novice problem solvers in domains such as chess
and physics (Larkin, McDermott, Simon, & Simon, 1980; Richman, Staszewski, & Simon, 1995; Simon &
Simon, 1989).  If this result holds for engineering design as well, then understanding the processes that occur as
engineers store and recall knowledge would have implications for design education.  An understanding of the
memory processes that go on in design would also allow the creation of better computational design aids as
well as enhancing tools that automate parts of the design process.  All of these benefits serve to increase the
productivity of designers while generating better quality products.
              Studying the domain of engineering design from a cognitive standpoint has the potential to produce an
even greater number of benefits for cognitive psychology.  First, there are a number of general cognitive
architectures such as ACT-R (Anderson & Lebiere, 1998) and SOAR (Newell, 1990) as well as memory
models, such as EPAM (Richman et al., 1995), that could be further evaluated by applying them to the domain
of engineering design.  An even more interesting area of cognition that could be examined within this domain
is creativity.  Creativity is a complex area of cognition that most models and theories of cognition have not
adequately explained or in many cases even explored.  Varying degrees of creativity appear regularly in
engineering design, and therefore any successful cognitive model of engineering design would have to account
for some of the creative processes that go into solving design problems.
              The fields of cognitive psychology and design can both benefit from research that examines the
cognitive processes that occur in design, but a complete cognitive model of engineering design is a far off goal.
There are more immediate benefits that can be obtained by including some general cognitive principles into
current design methodologies.  There are a number of existing design models and methodologies that attempt to
describe some of the cognitive processes that go into design.  One such model is the TEA (task/episode
accumulation) model proposed by Ullman, Dietterich, and Stauffer (1988), and another such model is the
model proposed by Adelson (1989), which incorporates a basic model of how analogy might operate within the
domain.  Other researchers have focused on computational methods for the domain (Welch & Dixon, 1994;
Campbell, Cagan, & Kotovsky, 1999, 2000).  Some of these models were meant to help explain the design
process, while others have attempted to automate parts of the design process or at least produce computational
aids to assist the designer.  In particular, the A-Design system automates the conceptual design process
(Campbell et al., 1999, 2000).
               This paper investigates the effects of incorporating some basic learning and memory processes into the A-Design
methodology.  These processes are inspired by what we know of human cognitive processes, and they are expected to
significantly decrease the amount of time that it takes for A-Design to construct good designs.  The effects of these
cognitive-like processes are evaluated in a series of experiments, but first, a brief overview of the A-Design process is
presented.  This overview is followed by an explanation of the modifications that were made to incorporate the knowledge
base and associated memory processes, and then some empirical results are discussed that demonstrate the effects of
utilizing previous design knowledge on some general electromechanical design problems.

A-Design

               A-Design is a multi-agent computational system that automates the conceptual design process, and it is currently
capable of solving several electromechanical design problems.  A brief overview of the structure and capabilities of the A-



Design system is necessary in order to present the results of this current research, however a more detailed description of
the system can be found in (Campbell, Cagan, & Kotovsky, 1999).

A design problem is specified to A-Design by encoding the input and output constraints of the desired device into A-
Design’s representation.  The example of a punch press device will be used throughout this description of the design
generation process (see Figure 1).  The input to the punch press is a downward force on a handle, and the output of the
device is a much larger downward force that drives a punch into some material.  Also, the punch should only traverse a
distance of .25 m.  Every design problem given to A-Design also specifies a number of objectives that the system should
try to optimize.  For example, in the punchpress problem the cost of the design should be kept to a minimum, the distance
that the input lever is displaced should be minimized, and the design should come as close as possible to the given
specifications for the output force and the distance the punch is displaced.   The cost of the design can be evaluated by
summing the cost of the individual components, but the other objectives are not as easy to evaluate.  The distance that the
input handle has to be displaced should be minimized, and in order to evaluate this objective, A-Design extracts behavioral
equations from a completed design and evaluates how close the actual displacement comes to the ideal displacement of
zero.  The other two objectives measure how close a given design comes to the specifications of the design problem.  For
example, suppose that the punchpress lever will always be given 6 N of force, and an output force of 100 N is desired
along with a punch displacement of .25 cm.  Using these given specifications, A-Design will evaluate the output force and
punch displacement of a given design by solving the appropriate behavioral equations with 6 N of force as the input.
Being able to evaluate a design automatically is essential to the A-Design process because these evaluations allow the
selection of current designs and the generation of future designs.

Figure 1.  The specification for the punch press problem.

              The adaptive selection and generation of designs is accomplished through an iterative design process
(see Figure 2).  In each iteration of the design process, the various software agents interact to produce an array
of candidate designs that satisfy the given problem constraints.  These designs are all evaluated on the multiple
objectives specified for the problem, and the designs are separated into three groups: pareto, good, and poor.
The designs that are selected from a design population actually consist of the Pareto group and the good group,
while the poor group of designs is eliminated from consideration.  The Pareto group is found by finding the
Pareto optimal set of designs as they are evaluated on the multiple objectives, and the good set of designs is
found by collapsing the multiple objectives of the design problem into a linearly weighted sum that is defined
by the user of the system.  Further details and definition of how these groups are determined can be found in
Campbell et al. (1999).  The Pareto designs automatically become part of the next iteration’s population, and
both the Pareto and good designs are allowed to "reproduce", in a manner described below, in the hope that
some of their offspring will be better designs than the original.  This adaptive design generation and selection
process is similar to the concept of a genetic algorithm (Mitchell, 1996).  The system will continue to develop
and propagate designs to the next iteration until no further progress is apparent or a maximum number of
iterations has been reached.

Figure 2.  An iteration in A-Design is a complete cycle that starts with the C-agents.

               The actual construction of a candidate solution to the design problem begins with the group of creator agents (C-
agents).  C-agents select embodiments from A-Design’s embodiment library and add these embodiments to an incomplete
design. Currently A-Design’s embodiment library contains 25 different types of embodiments, which include components
such as springs, gears, resistors, and motors. The actual embodiment selected from the library and the manner in which the
embodiment is connected to the incomplete design depend on each C-agent’s unique set of preferences.  For example, a C-
agent can prefer a specific physical domain, such as the electrical or hydraulic domains, and the C-agent could prefer to
connect components in a parallel rather than serial fashion.  As components are added to an incomplete design, the
design’s properties are updated until the design satisfies the given input and output constraints of the design problem or



until it is judged that the given design will probably never satisfy the design constraints.  An example of the latter case is
when all components in the design are connected to each other or to ground, and therefore there aren’t any additional
locations where another component can be added.  After a set of candidate designs has been constructed, the designs are
passed to the instantiation agents (I-agents) so that the conceptual design can be instantiated with real-world components.
These agents select from a catalog of real components and instantiate a design by assigning these real components to the
embodiments in a given design.  For example, a design might contain a spring embodiment that is instantiated by an I-
agent with a spring from the catalog of components, and this instantiated spring will therefore have specific values for
attributes such as length, width, cost, and spring constant.  This instantiation is a necessary process because it allows the
behavioral equations to be extracted, which make it possible to evaluate the design’s performance with regard to the
design objectives.
              The population of instantiated designs is passed to the manager agents (M-agents), and these agents
guide the overall design process through collection of C/I-agent statistics and trend extraction.  The M-agents
keep track of the number of good designs that each C/I-agent contributes to, and the probability that a specific
C/I-agent will be called upon in the future is a function of its past success.  More importantly, the M-agents can
extract current trends from the design population.  A trend is a particular set of agents or components that is
present in a set of designs, and trends are looked for in both the best and worst designs of a particular iteration.
The trends from the best designs are passed back to the C/I-agents as a "todo" list, and the trends from the
worst designs are passed back as a "taboo" list.  Agents will try to avoid items on the taboo list while trying to
produce items on the todo list.  In this manner, the todo/taboo lists allow the M-agent to influence the design
candidates that are generated in the next iteration of the design process.
              In addition to keeping the good designs from the current iteration, all good and Pareto designs are
passed to fragmentation agents (F-agents), who take out one or more components of the design.  These
fragmented designs are then reconstructed and become part of the next iteration’s design population.  This
fragmentation process allows good designs to propagate similar designs to the next iteration with the hope that
the changes made to the design will improve it.  This process is the basis of the A-Design system, and using
this method, the system can successfully solve a number of electromechanical design problems, some of which
are described below.

Design Memory

               Human designers benefit from the ability to learn from their experiences, and this knowledge in turn allows them
to solve design problems more efficiently because key parts of a design can be recalled from memory.  The ability to
design an electromechanical devise requires knowledge of a number of things including such things as the types of
components that are available to construct a device as well as how these components interact to achieve the desired
functionality.  One difference between experts and novices in a wide variety of domains is the size and organization of
these chunks in memory (Richman et al., 1995).  A-Design already had basic knowledge of the electromechanical domain,
but the system lacked a way to store larger chunks of useful design information as well as a way to organize and retrieve
these chunks from memory.  The A-Design process might benefit from possessing such a learning capability just as expert
designers benefit from the knowledge they have obtained through experience.  In order to begin examining the beneficial
effects that previous design experience might have on A-Design, the system was given the capability to store and retrieve
useful design knowledge.  Specifically, A-Design was given the capability to learn and remember good design chunks
from design problems it has solved, and these chunks can later be used when solving new problems.  A design chunk is a
group of components that appear in a design and are connected to one another.  A chunk could be a whole design, such as
the pressure gauge discussed above, or it could be a subset of the components in a design.  For example, the design chunk
of a belt and pulley would include the two components, a belt and a pulley, as well as how these components are
connected.  Furthermore, a design chunk also contains input and output constraint information so that it can be used
correctly in a later design.

            The extraction of design chunks from a population of designs utilizes the existing trend
detection functions already in place within A-Design.  The system will automatically detect trends



that include subsystems of components, and it can transfer these trends to memory along with the
information necessary for the subsystems to be reconstructed at a later time.  The storage of such
information brings up issues such as the structure and retrieval mechanisms of this memory system.
These issues are important, and they ask questions that can be at least partially answered by research
within cognitive psychology.  Since human designers can store information regarding useful
subsystems and can recall these subsystems for future use, then why not try to model A-Design’s
memory on this successful existing system?  The actual structure and mechanisms of a designer’s
memory are not known exactly, but there are general memory models available within the field of
cognitive psychology.  One such memory model is incorporated in a general architecture of cognition
called ACT-R (Anderson  & Lebiere, 1998).  ACT-R can successfully model a variety of human
cognitive activities, including those that require memory encoding and retrieval.  The ACT-R model
of declarative memory was chosen because it is a well developed model, and the code for the system
is freely available.
            The ACT-R theory is a production system model of human cognition that incorporates a model
of procedural and declarative memory.  Declarative memory in ACT-R is a collection of chunks, and
these chunks contain slots that identify values and properties associated with the chunk.  For example,
a design chunk generated by A-Design could look like the one in Figure 3.  In this chunk the isa slot
indicates that the chunk is a design chunk, the input domain to the chunk is translational, and the input interface
is a bolt.  This chunk is one example of a design subsystem that was learned from the punch press problem.
This design chunk represents the subsystem formed by connecting together the hydraulic ports of two hydraulic
cylinders.  The connectivity information in Figure 3 is a translation of A-Design’s internal representation of the
connectivity information in a chunk.  This particular chunk is useful in the punch press problem because two
cylinders connected in this manner is a good way of amplifying the input force of the punch press.

Figure 3.  An example design chunk learned by A-Design in the punch press problem.

Since ACT-R is a production system, chunks are retrieved from memory by matching to a production rule, and
the exact matching is determined through a spreading activation model of memory that is discussed in
Anderson and Lebiere (1998).  Activation is spread based on the values of the slots in a chunk, which means
that information can be retrieved from memory based on any of the slots of a chunk.  In A-Design, this model
means that a design chunk can be retrieved based on its input constraints, its output constraints, or both.  A
chunk could also be retrieved based on its connectivity information, but this retrieval function was not
implemented because it seems unlikely that a human designer would retrieve design chunks from memory in
this manner.  A designer might retrieve information based on how components are connected, but it is not
likely that this retrieval is as detailed as A-Design’s current representation of connectivity information.
Limiting A-Design’s retrieval mechanisms to input and output information of the design chunk seems
appropriate because a human designer could reasonably be expected to retrieve different subsystems from
memory based on the input and output characteristics of the design he is focusing on.  For example, a chunk
representing the brake system of a car could be retrieved from memory when the current design problem calls
for a subsystem that takes an input displacement and produces a decrease in velocity as output.
            In the modified A-Design method, the system will automatically store design chunks based on
the elements that appear on the todo list in the final iteration of a design problem.  So when the system
has finished solving a problem, it will record the subsystems that appear in the good designs.  A-
Design can retrieve these design chunks in a later problem using one of three different strategies, and
three new C-agents (called Mem-agents, see Figure 2) were added to A-Design to embody these
strategies.  As the C-agents are constructing designs, if one of the Mem-agents is called upon to add a



component to an incomplete design, that agent retrieves a suitable chunk from memory and adds it to
the design.  The agents focus on a particular part of an incomplete design, and they try to retrieve a
design chunk from memory based on the input/output constraints of this part of the design.  As
mentioned, there are three different Mem-agents, and they retrieve chunks from memory based on
different properties of the incomplete design.  One agent retrieves chunks from memory that match
the current input constraints of the incomplete design, another agent focuses on the output constraints
of the design, and a third agent tries to retrieve chunks that match both the input and output
constraints.  Only the input constraint Mem-agent is currently implemented in the system; the other
agents will be completed at a later time, which is a relatively small step.  These new agents along with
the memory store are the core of A-Design’s new learning and memory capabilities.

Design Problems

               There are three mechanical design problems that are used in the following experiments: a punch press, a pressure
gauge, and a weighing machine.  The punch press problem is the same as described above, a handle is pulled which forces
a punch through some material at the output.  Punch presses are evaluated based on their cost, the amount of input handle
displacement, and how closely they conform to the specified output displacement and force.  The pressure gauge problem
has an input pressure source and the output is a dial display that reflects the amount of pressure coming from the pressure
source, and this problem is evaluated on the cost, mass, efficiency, and dial accuracy of the gauge.  The weighing machine
takes a force input on a footpad and has a dial output, and it is evaluated on the cost, mass, dial accuracy, and input
displacement of the device.
               It was necessary to add these problems to the set of problems currently solvable by A-Design so that the design
memory addition could be thoroughly tested, and so I implemented them in A-Design’s input/output constraint
specification.  I also made modifications to the embodiment library since most of the embodiments in the current library
were originally included for the weighing machine problem.  These specific problems were added to provide both a
problem that was similar to the weighing machine as well as a problem that was significantly different from the weighing
machine.  The pressure gauge is a measurement device with a dial output just like the weighing machine, but the goal of
the punch press is to amplify the small input force so that it is sufficient to drive a punch through some material.  This
problem shares little with the weighing machine, and it was added to evaluate how context dependent A-Design’s new
knowledge capabilities would be.  For example, if A-Design learned design chunks from the weighing machine problem,
then these chunks might be easier to apply in the pressure gauge problem since this problem is similar to the weighing
machine.  On the other hand, applying these same design chunks to the punch press might be more difficult and potentially
less useful because the punch press does not have much in common with the weighing machine.

Experiments

Method

               Two experiments were run to determine if the added memory element would benefit the A-Design process.  The
first experiment evaluated the effects of design memory on the pressure gauge problem.  A-Design first solved the
problem without the new memory, and then the system solved the weighing machine problem and stored design chunks
from successful weighing machines.  Next, A-Design again attempted the pressure gauge problem, but this time the system
had knowledge of the weighing machine design chunks.  This procedure was repeated for the punch press problem in place
of the pressure gauge problem. In both experiments, the solution time and quality of the final design produced for the
problem solved without memory were compared to the solution time and quality of the final design produced for the
problem with knowledge of the weighing machine problem.
               On each problem, A-Design was run 20 times, and each of one of these runs will be referred to as a trial.  A total
of 20 different design populations were produced for each problem, one on each trial.  Each of these 20 trials was run for a
total of 60 iterations of the design process, and each trial had a design population of size 130.  The same weighing machine



runs were used for both of the experiments.  For example, the chunks learned from the first trial of the weighing machine
problem were used in both the first trial of the pressure gauge problem and the first trial of the punch press problem, the
chunks learned from the second trial of the weighing machine problem were used in both the second trial of the pressure
gauge problem and the second trial of the punch press problem, and so on.  Each design problem had a user evaluation
function defined for it.  This function allows designs evaluated on a number of objectives to be collapsed to one value so
that they can be compared.  This user evaluation function is currently just a linear weighted sum of the values for the
different objectives, and since all the objectives are minimization objectives, lower evaluation scores mean better designs.
In each of the design problems, the weights were defined to emphasize the objective that seemed the most difficult for A-
Design to optimize.  The weights were chosen in this manner because it seemed most interesting to let A-Design focus on
the most difficult design objective for each problem.  For the weighing machine and pressure gauge, dial accuracy was
emphasized, and for the punch press, the output force objective was emphasized.

Results

Pressure Gauge

              For each iteration of the problem without memory, the user evaluation for the best design in each of
the 20 trials was averaged.  This average user evaluation is plotted in Figure 4 for each of the 60 iterations in
the design problem.  The same procedure was used to generate average user evaluations for the 60 iterations of
the pressure gauge problem with memory.  The curve for the trials with memory appears to be lower on
average than the curve for trials without memory.  To determine if the availability of memory allowed A-
Design to produce better designs, the user evaluations of the best design for each of the 20 runs in the problem
with memory were compared to the corresponding evaluations for the problem without memory.  The mean for
the without memory condition was 32203, and the mean for the with memory condition was 26607, sd1 =
6296, sd2 = 3083.  A t-test was performed between these two sets of evaluations, and the results were
significant, t(27) = 3.57, p = .0014.  The addition of memory to A-Design allowed the system to produce better
quality designs.  Another way of assessing the benefits of design memory is to determine the amount of time
saved by solving a problem with memory.  To determine if the A-Design process with memory produced
designs equivalent to those of A-Design without memory in a smaller number of iterations, a cutoff value was
established by taking the average evaluation of the best designs produced by A-Design without memory for the
design problem in question (the value for iteration 60 for the without memory condition in Figure 4).  The
number of iterations that A-Design with memory required to reach or surpass this cutoff value was compared to
corresponding number of iterations for A-Design without memory (if a trial never surpassed this cutoff, then
the value of 60 iterations was recorded for that trial).  The mean number of iterations required in the without
memory condition was 36.6 as compared to 21.4 for the with memory condition, sd1 = 21.2 and sd2 = 14.2.
Another t-test was run for these two sets of numbers, and the results were S1, t(33) = 2.67, p = .012.  The
memory condition reduces the number of iterations necessary to reach the cutoff value by about 50 percent.

Punch Press

               The same types of analyses were also conducted for the punch press problem.  The results of the experiment can
be seen in Figure 5.  This graph gives the impression that having memory of the weighing machine problem may actually
impede progress on the punch press problem.  However, this observation may not be completely correct, because there
appear to be two exceptionally bad trials included in the with memory condition. In both of these trials, A-Design failed to
make progress on the problem until the very end of the set of 60 iterations.  Figure 6 shows the means from the punch
press problem if these two trials are not included in the dataset.  In this graph, it appears that memory of the weighing
machine did help in designing a punch press.  The mean evaluation of the best designs for the without memory condition
was 281,164 as compared to 250,991for the with memory condition, and both conditions had a standard deviation of
around 580,000.  The t-test for these groups was insignificant, t = 0.16, p = 0.87.  A cutoff value was determined by using



the same method described above, and the mean number of iterations required to reach the cutoff for the without memory
condition was 28.6 as compared to 25.4 for the with memory condition, and both conditions had a standard deviation of
around 20.  The t-test for these groups revealed insignificant differences, t = 0.53, p = 0.60.  Overall, even though the
graph of Figure 6 seems to indicate that memory of the weighing machine problem improved A-Design’s performance on
the punch press problem, these differences are not statistically significant.
[pic]Figure 4. The average best design over all 20 trials for both memory conditions of the pressure gauge.
[pic]Figure 5. The average best design over all 20 trials for both memory conditions of the punch
    press.

[pic]Figure 6.  The average best design over all 20 trials for both memory conditions for the
    punch press excluding two trials in the with memory condition.

Discussion

               A-Design does benefit from the capability to remember and later utilize useful design subsystems, and the system
displays the hypothesized result that transfer of knowledge occurs to a greater extent when the problems are similar.  The
results indicate that A-Design produced better designs with memory at least in the pressure gauge problem.  With previous
design knowledge, it was able to produce designs equivalent to the best designs generated without memory in about half
the number of iterations, again only on the pressure gauge problem.  On the other hand, there were no significant
improvements for the punch press problem.  The reason for the difference in results for the two problems is probably due
to the similarity (or lack thereof) between the weighing machine problem and the two problems tested (pressure gauge and
punch press).  The weighing machine problem and the pressure gauge problem are very similar both in their function and
output.  The function of both devices is measurement, and both devices display the measurement on a dial interface.  A
weighing machine might therefore have many of the same components as a pressure gauge, and these components will
probably connect in similar ways.  This overlap means that chunks learned by solving the weighing machine problem are
very likely to be useful when designing a pressure gauge.  On the other hand, the weighing machine and the punch press
problems differ in a number of ways.  The main function of the punch press is to amplify an input force, which doesn’t
have any readily observable mapping on to the measurement function of the weighing machine.  Also the input and output
interfaces between these two devices differ significantly.
               These results might imply that previous knowledge only helps if the knowledge was learned on a problem similar
to that on which it is being applied.  This result would be consistent with findings related to transfer of knowledge in
human problem solving.  Holyoak (1990) demonstrated that when the domains or contexts of two problems were similar,
subjects were more likely to transfer knowledge across problems than they were when the problems differed.  Transfer of
knowledge across problem boundaries can occur by a number of both explicit and implicit methods.  One of the well
known explicit processes for transfer is analogy, and the domain of engineering design seems to be a domain in which
analogy is a common process.  While the process by which A-Design remembers and retrieves design chunks is far from
an explicit model of analogy in engineering design, there is reason to hope that success with an implicit mode of transfer
like that which now occurs in A-Design could lead to the beginnings of a general model of analogy in the design domain.
               Another unexpected result that seems to be apparent in the data is that todo learning, the todo list, significantly
aids the design process when memory agents are present in the system.  In all of the preceding experiments, todo learning
was turned on during the 25th iteration of the design process.  At this point in time, the lines for the with and
without memory conditions really begin to diverge in Figure 4.  Additionally, memory agents usually only
contribute directly (adding an embodiment) to a design in about 2-3 of the top 10 designs in each trial of the
pressure gauge problem.  These results seem to indicate that some other process might be responsible for the
divergence of the two lines in Figure 4.  Also, in the punch press graph, there seems to be a significant
improvement soon after todo learning is turned on.  I hypothesize that the Mem-agents do contribute to a few
designs throughout the design process, but when todo learning is turned on the system is able to propagate the
good actions of the Mem-agents throughout the design population.  For example if a Mem-agent has made an
exceptionally good contribution to one design, then it is likely that this design will become part of the pareto or
good groups, and so this design will be kept in the design population from one iteration to another.  When todo



learning is turned on, the system extracts design subsystems from the best designs.  The design that the Mem-
agent successfully contributed to will likely be one of these best designs, and at least part of the subsystem that
the Mem-agent contributed might be included on the todo list for subsequent iterations.  The Mem-agents
therefore make a further indirect contribution to the design process because their contributions will likely be
propagated to other designs through their inclusion on the todo list.  This hypothesis needs to be tested further,
but it is an unexpected and surprising finding that results from the successful interaction of two independently
developed components of the A-Design system.
               If the addition of a simple form of design memory to A-Design can generate significantly improved results such
as these, what might other more substantial cognitive processes contribute to the design process?  The results from this
study point to questions about how human designers learn from their design experiences and how they use their experience
and domain knowledge in future problems.  Another interesting phenomenon in design is the creative leaps that designers
make in solving design problems.  What makes these creative leaps possible and how are they different from routine
design?  In order to answer these and other questions, it is necessary to begin a more complete analysis of the domain.  As
mentioned in the introduction, some researchers have produced models of the design process, but none of these provides a
satisfying explanation of the cognitive processes that underlie this highly complex domain.  Research developing a
cognitive model of design stands to benefit the domain of engineering design as well as psychology.  These benefits could
include improvements in design education, better computational design aids, design automation tools, an exploration of the
creative processes occurring in design, and further expansion and validation of current cognitive architectures.  A good
deal of work remains to be done, but current models and methods from cognitive psychology can be utilized to facilitate
the task.
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