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Abstract 
 
 The successful Systems Analyst must have an acute knowledge of productivity 
and the means by which productivity may be increased in his firm. The aim of this paper 
is to explore a few of the factors that affect productivity and in doing so, provide the 
manager with an understanding of how productivity can be increased in an 
organization. It proposes a Software Productivity regression equation, relating 
Productivity (the output) and various business factors. 
 



       Introduction 
1 

 
 

As Software Development firms prepare to compete in the e-business era, the 
ability to produce quality software on time is emerging as an important source of 
competitive advantage. Because software development is notoriously slow, firms have 
been experimenting with new approaches to software application development to 
meet current business needs. In response to these needs, firms have introduced quality 
management approaches, automated software design and development tools, and 
process improvement initiatives to their traditional methodologies [30]. In spite of these 
efforts, the software industry is still plagued by poor schedule, cost, and quality numbers 
[21]. The reason behind this could be due to either the true efficacy of the methods and 
tools or the organizational challenges in successful adoption of these proposed solutions 
or both.   

 
 A productive company would be able to complete more software projects in a 

shorter time, often producing them with fewer defects. In Economic sense, this translates 
into higher output and higher revenue, thus resulting in higher profit. Where the industry is 
highly competitive, productivity could be the deciding factor between the sustainability 
and failure of a Software company. Furthermore, due to the time-sensitiveness of the 
Industry, the speed at which a company is able to respond and fulfill a client’s order 
impacts many business decisions today. There is an ever present threat to the firm - of 
market share eroding with time - as customers will not wait for a delayed product when 
alternatives are readily available. For example, Ashton Tate a former database software 
leader lost its rein on the market due to a delay in releasing its (then) latest version dBase. 
Unnecessary long software development times may also indirectly affect other products 
produced by the company. A prominent example is IBM’s late launch of its PowerPC 
machines due to software delays. Lesser known examples are the numerous electronic 
manufacturing firms in Japan who, due to software delays, deliver their electronic 
products late, or with less features than intended - resulting in dissatisfied consumers.  
 

Under traditional economics, software programmers are utility maximizers. They 
are primarily motivated by self-interest, and they value both leisure and the goods and 
services money can buy. Likewise, they seek to avoid unpleasant or otherwise costly 
activities. ‘Putting forth their best efforts’ may entail working when they do not feel like it 
or engaging in activities that, other things equal, they would rather avoid. How can 
employers make the programmers more efficient? What policies can be devised to 
induce a high level of effort from each programmer?  
 

A textbook approach to this question would be to supervise the workers and to 
increase their pay. Ehrenberg and Smith writes about supervision: 
 

One way to motivate high levels of effort is to closely supervise employees. While 
virtually all employees work under some form of supervision, close and detailed 
supervision is costly. Tasks in any production process are divided so that the economies 
afforded by specialization are possible. In all but the most manual, repetitive tasks, the 
worker must make decisions or adjustments in response to changing conditions. To insist 
on extremely close supervision would mean that the supervisor must have all the 
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information exactly the same time as the worker – in which case the supervisor might just 
as well make the decision! In short, detailed supervision destroys the advantages of 
specialization… 
   

These problems of supervision are particularly relevant in the Software Industry. 
Constant supervision is simply an impractical approach.  
 

The other conventional method is motivating workers through pay. From the 
employer’s perspective, the big advantage of individually based output pay is that it 
induces employees to adopt a set of work goals that are consistent with those of their 
employer. Employees paid a piece rate are motivated to work quickly, while those paid 
by commission are induced to very thoroughly evaluate the needs of the firm’s 
customers. Moreover, these inducements exist without the need for, and expense of, 
close monitoring by the firm’s supervisors. 
 

However, incentive based schemes has its own problems. For one, it is difficult to 
satisfy both employer and employee. Basing one’s pay on one’s current output places 
employees at risk of having earnings that are variable over time. External factors such as 
illness, hardware failure will adversely affect the employee’s earnings if an incentive pay 
based scheme is solely used. The programmers may not be willing to bear the risks 
associated with such a pay scheme. 
 

Another problem is the extent at which employee’s measurable effort and the 
employer’s objective are correlated. Imperfectly designed performance measures run 
the risk of inducing employees to emphasize that part of the performance that is 
measurable and to ignore the other aspects. In the Software Industry, the most 
commonly used measure of output is LOC (lines of code).  
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Figure 0-1a: Illustrating the effects of an incentive-based scheme on LOC 
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Figure 0-1b: Illustrating the effects of an incentive-based scheme on Quality 
 
 

Increasing the employee’s wages may serve to increase the output which is 
measurable and quantifiable, but this may be different from what the employer hopes to 
achieve. In our case, the measurable output is KLOC (thousands of lines of code) and 
the firm’s ultimate objective is to increase Software Quality. Figures 0-1a and 0-1b 
illustrates this scenario. Take for example, two hypothetical programming teams Team A 
and Team B which are paid based on their output (KLOC). Increasing their wage rate 
from W0 to W1 will cause their output to increase. For Team A, this increase is from Kc to Kd 

and for Team B, this increase is from Ka to Kb. This increase follows from the conventional 
economics supply and demand theory, in which we treat KLOC as the output and pay 
as the price for that output.  
 

However, due to certain factors (such as the nature of the programming task, or 
other human factors) the correlation between KLOC and Software Quality for Team A is 
stronger than for Team B. This results in Team B’s software quality increasing by 
proportionately less, given the same increase in the wage-rate. In other words: 
 
 
 
% Increase in Quality for Team A      % Increase in Quality for Team B                                    
--------------------------------------------------            >               ---------------------------------------------------               
% Increase in Quantity for Team A   % Increase in Quantity for Team B 
 

 
 
This issue is more complicated than it seems. Software Quality cannot usually be 

determined immediately upon delivery, it has to undergo a complicated and rigorous 
testing procedure before its strength can be determined. Logic errors and bugs may only 
be apparent after subjecting the software through testing. Thus with no obvious metric 
on Software Quality, the firm can only measure that which is clearly visible – the number 
of lines of code.  
 
The firm’s real objective in raising Wages from W0 to W1 is for a notable increase in 
Software Quality. A weak correlation between Quality and Quantity undermines this aim.  
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Other problems with an incentive-based pay scheme include difficulties of setting the 
pay rate (due to the specific software requirements of each project, how can we 
determine a rational pay rate) and difficulties of quantifying individual output in a group 
project.  
 
These problems suggest that wages alone are not sufficient to effectively increase 
Software Productivity. This paper will be focused on two areas: finding a practical 
measure of Software Productivity and researching the means by which a manager can 
improve productivity in the firm.  
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       Factors affecting Producivity 
2 

 
 
FACTOR F1. TEAM SIZE (COMMUNICATIONS) 
 
In a study conducted by Jones [5,6], it was discovered that any step towards the use of 
structured techniques, interactive development, inspections etc. can improve 
productivity by up to 25%. Use of these techniques in combination can yield 
improvements of up to 25% t0 50%. The only single technique that by itself can improve 
the programming level by more than 50% is a change in programming language. Yet 
higher gains can be achieved by highly skilled programmers, or teams of highly skilled 
programmers. Gains of more than 100% can be achieved by database user languages, 
application generators and software reuse (see previous factor). While these gains 
appear to be enticing, it was also discovered that certain adverse factors (known as 
‘Dominators’) can suppress the effects of these other good factors. These ‘Dominators’ 
can reduce software productivity by an order of magnitude.  
 
Communications is one of the dominators of productivity [S1]. If there are n workers 
working on a software project, there are n(n-1)/2 pairs of distinct communication 
channels within them. As n increases, the number of channels grows exponentially, and 
the increased time spent on communications can have a major influence (negative) on 
productivity. 
 

 
 
 
Productivity studies have shown that as the Software Project Size increase, the 
productivity (measured as the ratio of output product divided by the input effort to 

 - 6 -



produce that output: Lines of Code / Person-Month). In practice, input effort is largely 
based on estimation and is thus subjective. The different graphs above exhibit variations 
in productivity due to software complexity. The 3 different complexity levels: COCOMO 
organic, COCOMO Semi-detached and Embedded Mode can be predicted by 
Boehm’s COCOMO equations [20]. For all three cases, it can be observed that the law of 
diminishing returns to scale hold true.  
 

 
 
We can assume that a system of one KSLOC (thousand source lines of code) would be 
developed by a small group or an individual programmer. A project of thousand KSLOCs 
would be developed by large organizations composed of many developers. We will 
examine the extent communications influence these productivity statistics.  
 
EFFECTS OF INCREASING PROGRAMMING TEAM SIZE 
 
Individual programmers working alone do not have interruption from group members. 
There is no need to divide the programming tasks and thus the ratio of productive time to 
total time spent can be large, for motivated programmers. Esterling [30] states that one 
programmer working 60 hours a week can complete a project in the same time as 2 
other programmers working normal hours, but at three quarters of the cost. If overtime is 
not paid, then costs are halved.  
 
Small groups of experienced programmers can create large systems. Pyburn Systems 
scours the US for the best analytical thinkers, who love to create order from chaos, love 
to work long hours and are driven to succeed [31]. They work in small teams of less than 5 
people to produce large software systems. A high pressure environment, small team and 
long hours often produces the best results.  
 
As the size of a software project grows, the number of programmers needed increases 
and communication will tend to dominate productivity. Jeffrey [32] asserts that there is a 
point where coordination overheads outweigh any benefits that can be obtained by the 
addition of further staff. The dramatic increase in effort needed as the size of the 
software systems grows is the result of the difficulty in coordinating the large number of 
programmers who are trying to perform the tasks in parallel. This is coherent with the 
economic theory of diminishing returns to scale. There exists a point in which additional 
input factors do not have any more beneficial effects on the production function.  
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Output / Input 
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Months) 

 
The graph above shows the theory of diminishing returns to scale. The slope of the curve 
represents productivity, and declines as we increase the factor inputs to the production 
function. At some point, the productivity becomes zero and after which increasing the 
number of team members yields negative productivity.  
 
A software group communications model was developed that simulated the actual 
communication links between groups [11]. The simulation demonstrated that, due to 
programmer communications, group productivity is affected by organizational structure; 
there is an upper limit to the number of programmers that can effectively be added to a 
group to increase group productivity; and the potential of highly productive people can 
be neutralized by assigning them to positions with high communication requirements. 
 
Jones pointed out that this view was explored initially in the 19th century by the 
pioneering organizational researcher Graicunias [33, 34], whose work on military 
organizations introduced squads and platoons into the US Army. The key observation was 
the geometric increase n(n-1)/2 of communication channels as n increases, and this 
research led to the conclusion that the upper limit of effective staff size for cooperative 
projects was about 8. 
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FINDINGS 
  
Software developers have many duties that occupy their time during a typical work day. 
A highly productive developer spends 51% to 79% of a day productively working on 
software development [11]. We assume that software developers spend 65% of a 8 hour 
work day as productive time. Esterling [30] found the average duration of work 
interruption was 5 minutes a day for the average programmer. 2 minutes is needed to 
regain the train of thought, making the average total time spent on an interruption to be 
7 minutes. In 5 hours of productive work (65% of 8 hours) a day, each interruption takes 
2.33% of the productive time, 10 interruptions would cost 23.3% and 20 interruptions 
(highly excessive) would cost 50% of the productive time.  
 
Simmons [1] examined the effect of only a few interactions between group members: 
 

 
 
In the figures shown above, efficiency was computer for fs equal to zero and fc between 
0.1% to 0.6%, where fc is the portion of total time spent interacting with each of the other 
group members. For these values, a group of eight members would be between 75% 
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and 95% efficient. In the lower table, efficiency was computed for values between 1% 
and 6%, which represents many more interactions between group members. For the 
same group of eight members, the efficiency would range from 23% to 64%. As the 
channels of communications continue to increase, efficiency would continue to 
decrease.  
 
Group efficiency is related to the group productivity speed up ratio Rn , which expresses 
group productivity in terms of the productivity of a 1-member group. 
 

 
 
 
In the figures above, group productivity speed up is shown for fc that ranges from 0.25% 
to 1.50%. Speed up of a 5-member group would be between 3.8 and 4.8, an eight-
member group would be between 4.3 and 7.0, and a 20-member group would be 
between 3.0 and 10.3.  
 
Note that, for a given fc, as the number of group members increases, the speed up 
increases, peaks and falls off. For an fc of 1.0% the speed up levels off at eight group 
members. For an fc of 1.5%, there would be no reason to have more than six group 
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members. As the interactions between all group members become excessive, the speed 
up declines dramatically, as can be seen in Fig. 8. As the fc varies from 3% to 6%, the 
optimum group size varies from five members to two members. 
 

 
 
In the figure above, the speed up calculated from the 187 database of Conte et al [18] 
is compared to speed up where communication varies. Note that the speed up based 
on Conte’s productivity equation, when plotted as a function of group size, is an entirely 
different shape to the communication speed up curves. 
 
CONCLUSIONS 
 
Excessive intra-group interactions result in communications dominating productivity. Both 
designers and managers affect the number of interactions. A poor design causes more 
interactions than a good design, and a good design causes more than a great design. 
Managers determine a scheduled time to complete a project, the number and 
experience of developers assigned to a project, and the organization of the developers 
into groups. The potential of highly productive programmers can be offset by assigning 
them to positions requiring high communications. When the size of a group exceeds 8 
members, communications begin to dominate productivity and cause group 
productivity to decline as additional group members are added. Thus, the optimum 
group size for a single software development is between 5 to 8 members. 
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FACTOR F2. COLLOCATING TEAM MEMBERS 
 
MOTIVATION FOR COLLOCATION: SUPERIOR COMMUNICATION 
 

As can be seen from the point above, communications take a large portion of an 
individual programmer's time. Past studies have indicated that less than 30 percent of a 
software development programmer's time in large projects is spent on traditional 
programming tasks and less than 20 percent of the time is spent on coding [6]. The rest of 
the programmer's time is spent in design meetings, resolving problems within the team, 
resolving specification misunderstanding with the customers, other communications with 
the customer and product testing, etc. Breakdowns in communication among 
development team members and with the customers often cause schedule delays, 
especially from rework when the delivered system is not fitting the users' needs. In 
addition, unplanned interruptions constitute a significant time sink, as does the time lost in 
context switching [36]. In traditional software development, formal artifacts and 
documents produced by one group are assumed to be sufficient to provide all of the 
information needed by another group. However, this is often not true [13]. The fact that 
tasks such as design, coding, systems, and integration testing are carried out by different 
groups hinders communication of both technical information as well as its rationale, 
resulting in project delay and rework. Even the physical separation of the software 
development team within a building can create several forms of communication 
breakdowns. Specifically, there is a logarithmic decline in communication with increased 
distance between collaborators, where any distance over 30 meters produced the same 
low probability that team members would talk to one another [4], [28]. Numerous 
ethnographic studies of teamwork reveal the subtle, hidden nature of the features that 
make communication effective. For example, chapters by Suchman, Hutchins and 
Klausen, and Heath and Luff in Engestrom and Middleton [14] examined transcripts of 
conversation from work practices to show how group work and workspaces are mutually 
constituted. Team members systematically communicate information both through 
various posted messages, their glances, the arrangement of chairs and desk, etc., to 
help accomplish the group task. Hutchins [22] has proposed a theory of “distributed 
cognition” to provide a theoretical framework for understanding how people exploit 
features of the social and physical world as resources for accomplishing a task (also 
termed “socially shared cognition” in [38] or “situativity theory” in [19]). In this view, 
communication creates mutually held representations of the work that allow activity to 
proceed successfully within a complex and ever changing context [23], [46]. The 
concept of common ground is used to describe how conversations proceed by creating 
shared understanding between participants [11]. This shared understanding is essential to 
conducting any joint activity. Communication breakdowns occur in a number of ways. 
For example, members of design teams can occasionally mistakenly assume that the 
others share a common understanding of an issue when in fact they do not. These 
confusions usually arise when each team member starts with an unstated assumption 
and is not able to immediately resolve the problem once a conflict is detected. When 
the team members are physically separated, this error will often not be detected until the 
following design review meeting when the group meets face-to-face. Meanwhile, other 
members of the team would have continued their work assuming that there was no error. 
A design change to rectify this mistake at a later stage will further add to the project 
delay. Such situations are not uncommon in any large software project. The same 
phenomenon is also observed when there is a communication breakdown between 
developers and the customers of the project. Ambiguity of customer specifications and 
misunderstandings of specifications are prevalent in customized application 
development. Once again, these problems can be attributed to conflicting unstated 
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assumptions that are not resolved immediately. There is evidence suggesting that 
collocation of the project team and customers in a war room can be effective in 
reducing such communication breakdowns and facilitating speedy resolution of 
conflicts. By improving communication, productivity and timeliness of the projects will 
also improve. 
 
TEAM COLLOCATION THROUGH “WAR ROOMS”  
 

In corporate America, collocation is achieved in what are called “war rooms.” 
The term generally refers to an immersive environment where experts, technology, 
managers, and new products come together in a “nerve center” to facilitate interactive 
information sharing with a minimum of outside distraction. In this context, the war room 
connotes the centralization of all the best resources into one location to promote 
efficiency and timely work output. These dedicated project rooms have also been called 
“skunk works” [43] or “team rooms” [45]. There have even been several software 
implementations of “virtual war rooms” [18] in an attempt to achieve these same ends 
while being remote, a point we will return to in the discussion. Driving the popularity and 
perceived significance of war rooms are several factors. First, it is economical to locate 
people in the same place at the same time. Although today's technology provides 
workers with a growing number of tools for interacting over distance (e.g., e-mail, 
message pagers, instant message systems, videoconferences), there is an enduring 
preference for face-to-face interactions [10]. Further, with collocation, every team 
member can be aware of all aspects of the project development without the need for 
scheduling status meetings and circulating written progress reports. Finally, corporate 
culture associates the worker's status with size of a workspace, proximity to high status co-
workers, and other locally relevant perceived advantages of a workspace [12]. 
Therefore, projects given a dedicated space are seen by outsiders as places for high 
intensity, important activities. Team members selected to participate in war room 
projects are usually hand picked by managers because of their particular skills and the 
perceived importance of the project over the worker's routine tasks. Several evaluations 
of workspaces lead us to hypothesize that collocating members of software 
development teams will enhance productivity. In an investigation of integrated product 
teams, Poltrock and Englebeck [37] described how physical collocation facilitated 
collaboration and coordination within teams via both scheduled meeting and  
opportunistic interactions. Sawyer and his colleagues found that team rooms helped 
focus the activities of the work group and isolated them from interruption from people 
outside the project [43]. Becker and Steele at Cornell's International Workplace studies 
program surveyed a number of case studies on collaborative teams and found that the 
way an office environment is organized influenced work processes such as coordination, 
work patterns, and communication internal and external to the team [8]. Kraut et al. [28] 
studied collaboration between scientific researchers and found that the physical 
distance between offices influenced the development of collaborative relationships and 
the execution of the work. Allen's [4] investigation into communication patterns in R&D 
laboratories found that engineers are more likely to communicate with the individuals 
nearest to them and that people tend to communicate more with people from the same 
group than from other groups. Although these studies provide evidence that war rooms 
should increase communication and facilitate efficient flow of work, they lack formal 
indicators of measurable performance outcomes of a project. Some of these 
communication-related issues are resolved partly in the various approaches to systems 
development discussed above. However, we believe that collocation of the entire team 
in a war room (with its concomitant limiting of the scope of the project) can combine 
several advantages to overcome the breakdowns. For example, collocating the 
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customer with the designers and developers brings in the advantages of quick customer 
feedback and fast resolution of requirement questions, as in prototyping and joint 
application development. Collocating the team also helps in resolving misunderstanding 
among designers and developers and also helps to ensure adherence to formal 
procedures and quality standards, as in the traditional waterfall model. Although 
collocation will increase interruptions, the interruptions are about the project itself, 
producing only minimal loss from context switching. 
 
EXPERIMENT 
 
A research conducted by Teasley, Covi, and Olson [3], at the Rapid Software 
Development Center (RSDC), (consisting of six war rooms, additional conference rooms, 
and hotelling2 areas) strived to study collocation by implementing the following 
measures: 
 
(1) Productivity indicators, standard measures including time to market, and function 
points per staff month, 
 
(2) Questionnaires, administered at the beginning, asking all team members about their 
predictions about their satisfaction with the facilities and again, at the end of the project, 
assessing their actual satisfaction with the facilities, 
 
(3) Observations of two teams in depth from visits with them about 8-10 hours a week for 
the duration of the projects and interviewing the team members at project completion,  
 
(4) Questionnaires, administered at project completion, assessing team satisfaction, 
customer satisfaction, and sponsor satisfaction for all pilot projects. These measures are 
described in detail below.  
 

 
FIGURE 2-1 
 
The facilities at the RSDC included a dedicated war room for each software 
development team, conference rooms nearby, and various hotelling cubicles for more 
private work away from the team. Fig. 2-1 shows the general layout of the rooms. The 
dedicated war rooms were outfitted with individual workstations for each of the team 
members. Workstations were arrayed along the outside walls, shown in the lefthand 
panel of Fig. 2-1, or in a “E” shape, shown in the righthand panel of Fig. 2-1, more like 
individual cubicles, but without any walls. In the middle of the room was a worktable, the 
walls had whiteboards, and flip charts on easels were available as needed. Several 
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rooms had printing whiteboards. Near the war rooms were conference rooms, available 
on a first-come-first-served basis. One conference room was outfitted with video 
conferencing for use in remote meetings with others as needed. “Hotelling” space–
unassigned, more private, quiet cubicles with workstations and phones–was also 
available nearby. These facilities contrast with the company standard of relatively large 
individual cubicles with 6-foot walls near cubicles with people who may or may not be 
associated with the same project. The company benchmark statistics come from people 
in such cubicles.  
 
The Teams 

 
The six teams ranged in size from six to eight people. Each team consisted of a manager, 
three to four contract employees for the programming, and two to three business 
partners from within the company who were the intended  (internal) customers of the 
applications. The teams shared the services of methodologists, technical architects, 
database experts, and testing specialists. For the duration of the RSDC project, the team 
members were not sharing their time with any other projects. The teams in this study differ 
from the teams included in the company benchmark statistics on only these factors. They 
were neither individually selected for the teams nor newly hired for the experiment.  
 
The RSDC Projects  
 
The six projects selected as pilots for the RSDC were developed on client-server and 
mainframe platforms. The projects came from several areas of the company, including 
manufacturing, finance, market and sales systems, and purchasing. The projects 
included a global financial database, a system to measure equipment effectiveness, a 
retail website, a system to support competitive analysis, a bill of material audit, and a 
database. The projects ranged in size from 326 to 880 function points (a standard 
measure of size described in Section 3.5).  
 
Measures of Team Experience  
 
Questionnaires were used to measure the teams' experience with and preferences for 
various kinds of workspaces and tools. The entrance questionnaire had 103 items and 
took about 20 minutes to fill out. This questionnaire asked about the person's prior 
experience with various facilities and technologies using a 5-point scale anchored with 
“not at all” to “very frequently.” This questionnaire assessed team members' predictions 
of how frequently they would use new facilities like war rooms and hotelling space, 
conference rooms, etc., at the RSDC, as well as new technologies available to them at 
the RSDC. The questionnaire also asked team members to assess how well they liked to 
work in various facilities or with various tools, using a modified 5-point Likert4 scale with 
“strongly dislike” to “strongly like” as the anchors. The questionnaire also asked for team 
members to assess their preferred work styles, again using 5-point Likert scales, with 
“strongly disagree” to “strongly agree” anchors. The latter items are listed in Table 1. Nine 
items, starred in the table, are those intended to assess the kinds of preferences that 
people have about characteristics we thought the new facilities would engender, such 
as being busy and collaborative. The exit questionnaire contained 71 items of similar 
content as in the entrance questionnaire. However, instead of predicting the future 
frequency and preference, these asked how often team members did use various 
spaces and technologies and how they liked or disliked them. This questionnaire also 
asked the same questions shown in Table 1. To better understand the reasons behind 
their opinions, all the team members from two of the pilot teams were  interviewed 
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individually. These team members were encouraged to talk freely about the advantages 
and disadvantages of the war rooms, the aspects of team dynamics, their attitudes 
about the layout and equipment in the rooms, why and when they used hotelling space, 
and other features they would change to make the RSDC a better environment. 
Interviews took about one hour to 1 1/2 hours. For the two teams studied in-depth, each 
individual was asked to fill out a short 9-item questionnaire biweekly, asking both for some 
quantitative assessment of the team and war rooms, but also some narrative responses 
to back up their numerical responses, answering in each case “Why or why not?” The 
same two teams were observed for about 8-10 hours over the course of the projects. 
Observation notes were transcribed immediately after each observation session and 
then clustered by two of the researchers into major categories of actions/statements 
relating to the research question.  
 
RESULTS 
 
The productivity of the pilot teams was compared with two benchmarks, shown in Table 
2. The Function Points/Staff Month and the Cycle Time to both the industry standard for 
projects of comparable sizes and the baseline for the company was compared. The 
company baseline numbers for productivity and cycle time were computed in the 
following way: A consulting firm that specializes in software metrics was hired to select a 
sample of past software projects from multiple domains and functional areas within the 
organization. No outlier projects, i.e., extremely large in size or with long duration, were 
selected. Ninety-three projects were selected from different functional areas in the 
organization and the productivity and cycle time numbers of these projects were used to 
arrive at the company baseline measures. The sample of projects were divided into two 
subsamples based on the two major platforms for development, i.e., mainframe and 
client-server used in the organization. The baseline measures for mainframe and client-
server projects were computed using simple average of the data collected from these 
projects. Since the software process used prior to RSDC involved all the stages in the 
waterfall model and the RSDC projects started with a well-documented design, we 
adjusted the baseline productivity and cycle time numbers to include only the stages 
covered in RSDC.5 
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The industry standard numbers were obtained from the SPR database after adjusting for 
the size of the projects used in our sample [26]. SPR presents industry benchmarks for 
projects implemented on mainframe and client-server platforms. These benchmarks are 
presented for project sizes ranging from 200 to over 10,000 function points and are also 
adjusted to include only the stages after detailed design in the development process. 
These adjusted industry benchmarks were used, often referred to as physical function 
point measures, for projects with 600 function points in our comparison shown in Table 2. 
600 function points were selected since the mean size of projects implemented in RSDC is 
600. The sample of pilot projects included an equal number of mainframe and client-
server projects and, hence, the average of mainframe and client-server benchmark 
numbers for our comparison was computed. The pilot teams produced double the 
number of function points per staff month from the previous company baseline and 
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more than double from the industry standard. Using the variance of the measures among 
the six pilot teams in an estimate of the variance of the means, the pilot team metrics are 
significantly different from the means of both the company baseline (t = 5.67, p < .001) 
and the industry standard (t = 4.76, p < .001). The pilot teams did not have a lower cycle 
time than either the company or industry standard. The team, sponsor, and end user 
satisfaction measures are shown in Table 3. These scales ranged from 1 = very dissatisfied 
to 5 = very satisfied. In summary, the pilot teams were remarkable in their productivity 
while not sacrificing team, sponsor, or end user satisfaction with the resulting products.  

 
How the Facilities Impacted the Collaboration and Communication  

 
The entry and exit questionnaires also revealed that attitudes about the activity in the 
room changed over time. As shown in Table 7, at project completion, individuals were 
significantly less distracted by the presence of others in the room (t (5) = 3.64, p < .01). 
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IMPLICATIONS OF THE EXPERIMENT 

 
The data from Teasley’s study are striking. Groups working in the RSDC showed 
significantly improved productivity and high levels of satisfaction by everyone involved, 
from team member to customer. The significant improvements in productivity over the 
company baseline are most likely 
 

 
due to the tight fit between the development method (timeboxing) and the 
collaborative facilities. War rooms contributed to the enhanced software development 
because they constituted a collaborative information system, which facilitated 
communication and continual awareness [23]. There has been a follow-on to the pilot 
projects at this company. Because of the positive results for the pilot teams, the 
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company has built 112 war rooms in a facility solely dedicated to software development. 
Groups of eight war rooms constitute a “neighborhood” in which a central area houses 
the support services (e.g., the database expert, the methodologist, etc.). The rooms 
themselves are both large and configured in the “E” style used in a few of the pilot teams 
(see Fig. 1). The entire end wall of the room is whiteboard (and, indeed, they ask for 
stepladders so they can use the entire surface). In informal training or status meetings, 
teams project a laptop from a portable stand onto the whiteboard, which has a 
semigloss surface suitable for viewing. This paper has shown that, when people are 
radically collocated on a software development team, productivity goes up and 
timeliness increases. Collocation brings interactive, continuous communication, which 
allows overhearing and awareness of teammates' activities. This helps for clarification, 
problem solving, and learning. It also enhances team building.  
 
FACTOR F3. REDUCING REWORK COSTS 
 [IEEE Transactions On Software Engineering, Vol. 14, No. 10, October 1988] 
 
One of the key insights in improving software productivity is that a large fraction of the 
effort on a software project is devoted to rework. This rework effort is needed either to 
compensate for inappropriately-defined requirements, or to fix errors in the 
specifications, code or documentation. For example, Reference [70] provides data 
indicating that the cost of rework is typically over 50 percent on very large projects.  
 
A significant related insight is that the cost of fixing or reworking software is much smaller 
(by factors of 50 to 200) in the earlier phases of software life cycle than in the later phases 
[22], [44], [35]. This has put a high premium on early error detection and correction 
techniques for software requirements and design specification and verification such as 
the Software Requirements Engineering Methodology, or SREM [3], [4] and the Problem 
Statement Language/Problem Statement Analyzer [111]. More recently, it has focused 
attention on such rapid simulation [125], [109], which focuses on getting the right user 
requirements early and ensuring that their performance is supportable, thus eliminating a 
great deal of expensive downstream rework.  
 

 
 
Another important point is that rework instances tend to follow a Pareto distribution: 80 
percent of the rework costs typically result from 20 percent of the problems. Graph 
above shows some typical distributions of this nature from recent TRW software projects; 
similar trends have been indicated in [102], [47], and [13]. The major implication of this 
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distribution is that software verification and validation activities should focus on 
identifying and eliminating the specific high-risk problems to be encountered by a 
software project, rather than spreading their available early-problem-elimination effort 
uniformly across trivial and sever problems. Even more strongly, this implies that a risk-
driven approach to the software lifecycle such as the spiral model [27] is preferable to a 
more document-driven model such as the traditional waterfall model. 
 
 
The natural solution to cut down rework cost in to reuse components. Intuitively, savings 
occur with software product reuse because reused components do not have to be built 
from scratch. Further, overall product quality improves if quality components are reused. 
With software process reuse, productivity increases to the extent that the reused 
processes are automated, and quality improves to the extent that quality-enhancing 
processes are systematized. Further, there is plenty of duplication in the applications 
being developed and maintained nowadays, and hence plenty of room for reuse. In 
1984, for example, the U.S. software market offered some 500 accounting programs, 300 
payrolls programs, 150 communication programs, 125 word-processing packages, etc. 
[77]; the figures are probably higher today. In the early eighties, Lanergan and Grasso 
estimated that 60% of business applications can be standardized and reused [85]. 
Generally, potential (estimated) and actual reuse rates range from 15% to 85% (see, e.g., 
[59], [103]). Existing experience reports suggest that indeed good – sometimes impressive 
– reuse rates, productivity and quality increases can be achieved (see, e.g., [12], [13], 
[73], [100]). However, successes have not been systematic (see e.g., [59], [133]), and a 
lot of work remains to be done both in terms of “institutionalizing” reuse practice in 
organizations and in terms of addressing the myriad of technical challenges that make 
re-use difficult [83].  
 
TECHNICAL DETAILS OF REUSE 
 
Adopting the transformational systems’ view of software development as a sequence of 
transformations and/or translations of the description of the desired system from one 
language (level i description) to another (level i + 1 description) as shown in Fig. 1. Three 
levels of knowledge are used in this translation: 
 

1) knowledge about the source domain (level i) 
2) knowledge about the target domain (level i + 1), and  
3) knowledge about how objects (entities, relations, structures) from the source 

domain map to objects in the target domain. 
 
For a given level , the knowledge can be seen in linguistic terms, as consisting of a 
domain language, and a set of expressions known to be valid. The domain language 
consists of domain entities (or classes) and domain structures. The descriptions of the 
various entities and structures can be based on an enumeration of legal entities and 
structures, or based on a set of properties that must be satisfied by either (e.g., 
consistency checks, composition rules), or a mix of the two. We refer to the description 
methods as enumerated and compositional, respectively. The descriptions of past 
problem instances constitute the expressions that are known to be valid. 
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The mapping knowledge consists of a set of transformation rules, from level I to level I + 1, 
and a set of known mappings between problem instances of level I and problem 
instances of level I + 1. The transformation rules embody what is usually referred to as 
process reuse or skill reuse (see, e.g., [133]). We shall refer to them as the transformational 
grammar. Note that this formalism does not distinguish between declarative knowledge 
and procedural knowledge as we feel the distinction to be a mainly representation issue.  
 
Typically, development consists of, first, describing (specifying) the problem at hand in 
the language of level I to obtain a description PDi and, second, transforming that 
description into one at level I + 1 (PDi+1), supposed to be the target description language 
(e.g. executable code). With reuse, one would want to avoid having to manually,  
 

1) Specify completely the problem at hand and/or 
2) Transform the entire specification of level I into level I + 1 

 
Thus, reusable assets include all the kinds of knowledge involved in the development 
transformation (DTi->i+1), which can be thought of as the result of applying a generic level 
independent problem-solving method on the relevant knowledge sources. The various 
reuse approaches can be categorized based on: 
 

1) The extent to which the language of level I covers the problem domain of level I 
and  

2) The extent to which the mapping knowledge (Ti->i+1), covers all the entities and 
structures (i.e. all the valid expressions) of the domain of level i.  

 
Finer characterizations may be based on the kind of language description used, along 
the enumerated versus compositional dimensions. Table II shows the characteristics of 
some of the approaches commonly referred to in the literature. As we go down the rows 
of Table II, we move from what is generally referred to as the building blocks approach to 
increasingly automated generative approaches. Automation requires the complete 
“cover” of the source domain language (level I) and the completeness of the mapping 
knowledge I -> i+1. In other words, automation is possible if we can express all new 
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problems in terms of problems, or combinations of problems, that have already been 
solved. We comment below on the various approaches separately. 
 
With source code components, a new problem is solved by composing solutions to 
subproblems. A complete cover o level I domain would mean that all the components 
that one may need have been developed, or, more astutely – but equally unrealistic – a 
set of components that have been developed such that every problem can be reduced 
to subproblems that these components can solve. Notwithstanding the issue of finding 
such a decomposition/reduction, which can be as challenging as solving the original 
problem analytically from scratch, the number of required components is most probably 
prohibitive [83]. That number depends on: 
 

1) the breadth of the application domain and  
2) the composition technique used. 

 
With source code components, composition often takes place “too late” in the software 
life cycle, limiting the range of behaviors that can be obtained from a set of components 
to variations on functional composition, as supported by traditional module 
interconnection languages (see, e.g., [129]) or programming languages. Source code 
components approaches that support composition of components at a higher level of 
abstraction yield a greater range of behaviors (see, e.g., [78], [149]). Software schemas 
are similar to source code components, except that the reusable artifacts are defined at 
a higher level of abstraction, allowing for a greater range of instantiations (through 
partial generation) and compositions. Further, the added parameterization makes it 
possible to build complex, yet generally useful structures (see, e.g., [16]). However, the 
artifacts are still not meant to cover all the needs of the application domain, and finding 
and expressing the right compositions are still challenging design problems.  
 
With the remaining 3 approaches, the source domain language covers the application 
domain. Transformational systems fall short of automation because the mapping 
knowledge is incomplete or non-deterministic: A transformational system needs 
developer assistance in selecting among applicable – and perhaps objectively 
equivalent – transformations [123]. The transformational approach can be used in 
conjunction with source code components to assist in the modification and integration 
of such components in new applications [113]. Full automation is achieved with 
application generators and very high-level languages. With very high-level languages, 
automation is possible at the cost of code efficiency and design quality; very high-level 
languages are not intended to implement production quality software. Automation is 
possible with application generators because of a restriction of the application domain. 
The restriction has the added advantage of making it practical to enumerate a set of 
template software specifications (or the corresponding software “solutions”) 
parameterized directly with user requirements.  
 
It is fair to say that as we go down Table II, the focus shifts from components to 
composition, and the language for expressing compositions moves up in terms of 
abstraction. This corresponds closely to Simos’s “reuse life cycle”, which prescribes an 
evolution of reuse approaches within organizations, following the maturing of both the 
application domain and the expertise of developers within that domain [148]. 
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COSTS AND BENEFITS OF REUSING SOFTWARE 
 
The most vaunted advantages of software reuse are: 
 

(1) An increase in the productivity of software development, which translates 
directly into monetary terms and 
(2) An improvement of the quality of the products, which may mean less 
corrective maintenance, easier perfective maintenance, greater user satisfaction, 
and so forth, all of which translate into monetary gains 

 
However, there are also different costs associated with software reuse, both capital 
setup (up-front) costs and proportional costs (cost-per-use). Further, different technical 
approaches to reuse have different investment and return on investment profiles (see, 
e.g. [42], [148]). Economic models and software metrics are needed that quantify the 
costs and benefits of reuse.  
 
Three basic managerial decisions exist for software reuse: 
 

(a) The decision to launch an organization-wide software reuse program (a long-
term, capital investment-like decision [11], [52], [128]) 

(b) The decision to develop a reusable asset (a domain engineering decision [52] 
and 
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(c) The decision to (re)use a reusable asset in an application currently under 
development (an application engineering decision [52]). 

 
To decide on the most suitable re-use decision, few factors have to be taken into 
account: 
 
Reuse (White Box / Black Box) Cost 
 
Reuse Cost is explained by Mili [1-S] in the context of a point in development where a 
developer has the option of building a component from scratch, but chooses instead to 
try to reuse a component from the library. 2 kinds of reuse exist: White Box Reuse and 
Black Box Reuse.  
 
In Black Box Reuse, the component is integrated in its host environment without 
modifications, and the average cost of doing Black Box Reuse is given by: 
 

 
 
where search is the cost of performing a search operation on the database, 
Development is the cost of developing the component from scratch, and p is the 
probability that the component is found in the database. The reuse option is only 
attractive if: 
 

 
 
To favor reuse, the library coverage has to be adequate (large p) to make sure that 
developers can quickly find the component they need or determine that it doesn’t exist.  
 
For White Box Reuse, the component is adapted and integrated into the host 
environment, and the developer must weight the cost of producing a component from 
scratch against the cost of attempting to reuse one, possibly after modifying it. The 
average cost of developing with intent to reuse can be formulated thus: 
 
 

 
 
where p is the probability that the component is found in the database, q is the 
probability that a satisfactory approximation of the component can be found, 
ApproxSearch is the cost of performing the approximate search, Search is the cost of 
performing an exact search operation on the database, Development is the cost of 
developing the component from scratch, and Adaptation is the cost of adapting the 
component to its host environment [11]. The reuse option is attractive if: 
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If we consider that the fact that a satisfactory approximation of the component is found 
means that Adaptation is less than Development, then a sufficient condition for reuse to 
be attractive is given by: 
 

 
  
which means the overall cost of search, whether a satisfactory component is found or 
not, is less than the savings that actually result from those (100p) % cases where a 
satisfactory component is found.  
 
A developer who is well-versed with the contents of a component library can locate 
what he/she needs more quickly and knows when not to bother even looking. This has 
the effect of reducing the cost of individual searches (Search and ApproxSearch) and 
their relative frequency, which in case of perfect knowledge about the contents of the 
library, go down from 1 to p for exact search and from 1 - p to q for approximate search.  
 
REUSE PROGRAMS 
 
It is a well-accepted fact that reuse increases software productivity, however, the 
question is not so much whether to set up a reuse program or not, but how. Reuse 
programs will inevitably vary across every organization, as there is no easy way to find out 
how much reuse is possible without actually doing it for a few years. To this end, Davis 
[42] proposed a set of guidelines (a reuse capability model) which helps organizations 
define the objectives of reuse in terms of  3 measures: 
 

1) reuse proficiency – which is the ratio of the value of the actual reuse opportunities 
exploited to the value of potential reuse opportunities 

2) reuse efficiency – which measures how much of the reuse opportunities targeted 
by the organization have actually been exploited and  

3) reuse effectiveness – which is the ratio of reuse benefits to reuse costs 
 
FACTOR F4: CODE INSPECTION 
 
BACKGROUND TO CODE INSPECTIONS 
 
 A software inspection is a formalized and rigorous review method. They were 
originally developed by IBM to improve software quality and increase programmer 
productivity. First described in writing by Fagan [1-1] in 1976, inspections have gradually 
gained popularity with companies other than IBM [1-2] and have even spread to other 
countries [1-3]. The aim of inspections is to decrease maintenance and product errors, in 
order to effect an overall increase in quality and productivity. Initially, the inspection 
method devised by IBM consisted of teams of three to six participants. This was then 
adapted by Bisant and Lyle, [1-S] to a leaner two-man variant of the original system as 
described below. 
 
DESCRIPTION OF CODE INSPECTIONS 
 

This technique involves pairing up coders in groups of 2 with the aim of code 
inspection. In this group, there will be a designer and an inspector in which the roles are 
switched at the end of the inspection process. The inspection process consists of the 
following steps: 
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1. Overview 
2. Preparation 
3. Inspection 
4. Rework  
5. Follow-Up 
 

For Overview, the designer would describe the overall dimensions of the project 
and how his portion fits into that area. Preparation is the vehicle for individual education. 
The inspector studies the design, its intent, and its logic. The inspector should also study 
the ranked distributions of common error types, as well as clues on how to find common 
errors. During inspection, the inspector will describe how he will implement the design as 
it is expressed in the document. The objective during the inspection is to find errors. The 
errors are detected during the discussion. Any questions raised are pursued only to the 
point where the error is identified. The error is then noted and classified. If the solution is 
obvious, then it is noted otherwise the inspection continues. The inspection is not to 
redesign, consider alternative design strategies, or evaluate what is being inspected. A 
report on the inspection and its findings is then issued after a day. Rework is performed by 
the designer to correct all defects and follow-up is done by the inspector to ensure that 
all issues of concern have been covered and all rework has been completed.  
 

All operations are necessary. Omitting or combining steps leads to inferior 
inspections outweighing any short term benefits. It is also important not to submit too 
much work to any one inspection session. The optimum duration of the inspection session 
is about 2 hours. 2 sessions per day are recommended and rework or follow-up must be 
scheduled so it is not postponed or avoided.  
 

Part of the process of using inspections is the formation of a defect-classification 
scheme. This scheme must be defined for all inspection types used in an organization. 
Once the scheme is established, analysis of error data is straightforward and this 
information can be used for process control. Errors should be classified as to their type; 
whether they are missing, wrong, or extra; and whether they are major or minor. The 
defect specification is constructed by inspecting representative products and analyzing 
the errors found by type, origin, cause and salient indicative clues. Once the 
specification is constructed it can be used as an aid in teaching people how to find 
errors effectively and how to focus on high cost errors. 
 
HOW INSPECTION IMPROVES PRODUCTIVITY 
 
 There are two main benefits of inspections. The first benefit of conducting code 
inspections is to make the resulting product more statistically predictable. This means that 
figures such as hours worked, lines of code and errors produced while coding fluctuate 
less. Predictable and reproducible data will allow management to use the statistics as a 
basis for estimating cost of future projects, or as a basis for conducting research. The 
second benefit of inspections is to reduce coding errors and to improve individual 
programming productivity. Several studies have been conducted to support these 
assertions.  
 
STUDIES AND FINDINGS 
 

With this inspection system, the next natural question to ask is how reliable this 
system is, and how predictable the results of inspections are. Holding all factors constant, 
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it was found that inspections generally reduced the occurrences of errors by 38% [1-S]. 
However, different teams of programmers with different experiences and abilities will 
produce inspections of different qualities. Buck (IBM) [1-8] conducted a significant study 
to determine the magnitude of this variability and the factors that contribute to this 
variation. His initial analysis demonstrated 2 populations: 
 
1) Fast material coverage and low error detection 
2) Slower material coverage and high error detection 
 

However, he could not determine if the code being inspected by the second 
population was more error prone. In an experiment to address this question, Buck 
reviewed 106 inspections of a constant software module which was used for training 
purposes in IBM. Buck examined the variables: size of inspection team, rate of coverage, 
amount of preparation, and the number of major errors found. It was found that 
inspection coverage of code at the rate of 125 NCSS (Non Commentary Source-Code 
Statements) per hour or less found an average of 43 percent more major errors than 
inspections that proceed at a faster rate. Reports from inspections of variable quality 
design and code materials also showed that high quality inspections, as determined by 
proper rate of coverage, find more errors as Table 1 indicates. 
 
Table 1 
Inspection Rates* (NCSS/Hour) 
 
Inspection 
Number 

Recommended 
Preparation Rate 

Actual Rate Maximum 
Rate 

Additional Errors 
Found When Rate 
is < Maximum 

0 200 220 295 178% 
1 100 100 135 112% 
2 125 90 125 136% 
* Refer to step 2 of the inspection process 
Source: Fagan [1-8] 
 

Given the rate of coverage, team size (3, 4 or 5 members including moderator) 
does not significantly affect error detection. Large team sizes were found to have 
decreases in individual preparation time. It was also found that more preparation 
increased the likelihood of holding the inspection at the planning rate coverage. 
However, preparation could not compensate for improper coverage. One other finding 
of this study indicated the larger the amount of material to be inspected, the lower the 
percentage of recommended preparation time was put in by the inspection teams. As 
was briefly mentioned above, analysis was also performed on 520 variable quality code 
inspections. The analysis of these reports came to the same conclusions concerning 
team sizes and rates of coverage. Once again, about the only factor which was not 
examined in this study was the initial level of expertise of the participants. 
 

As can be deduced from the research just presented, the formal and rigorous 
structure of inspections makes the data gathered during them much less variable. Since 
the results are repeatable and of high scientific quality, confidence can be placed in the 
data for use in process control. Inspections overcome the difficulties of assuring 
consistently reproducible data under conditions of diverse staffing and products. 
Management can use the data from inspections in several ways. The data can be used 
as feedback to improve the software development process and the inspection process 
itself. 

 - 28 -



 
Another experiment conducted by Bisant and Lyle[1-S], attempted to test a 

formal method for software inspections which used a leaner 2-person team. This was 
done by eliminating the role of the moderator. This modification was created with small 
organizations (in which forming large teams is impossible) in mind. Also, the experiment 
strived to verify the implication in Buck’s study that 2-man teams are just as effective as 
larger teams. Verification of this fact would allow management to save significant 
manpower. Lastly, Bisant and Lyle’s study aimed to shed light on the dynamics of the 
team error-detection process.  
 

The experiment was conducted at the University of Maryland-Balitmore County, 
using third year undergraduate students in Computer Science as the subjects of the 
study. Research by Soloway and Erlich [1-11] has revealed that students at this level have 
developed similar cognitive organizational structures and strategies to those used by 
experts. Rudimentary development of these structures and strategies were even seen 
after only 3 programming courses. So, although undergraduates at this level are not the 
same as experts, they have taken significant steps in that direction. Additionally, the tasks 
and measurements that would be required fit well into the present data structures 
curriculum. Although high experimental mortality is expected with undergraduates, the 
experimental design was able to partially compensate for this. Since most groups of 
programmers are not homogenous with respect to ability despite similar background, 
assuming homogeneity can bias results. Despite this, most studies proceed under this 
assumption. This experiment used a design which is used rarely in the computer software 
engineering field although it most likely is used in other fields that are empirically 
oriented. This design is the Pretest-Posttest Control Group design as outlined by Conte, 
Dunsmore, and Shen [12]. It is relatively unaffected by lack of homogeneity as this can 
be compensated by modeling in the analysis. Using a control and an experimental 
group, a program was given to all subjects and a productivity measurement taken for 
that program.  

 
Each class member was given two programming assignments which could be 

coded in the high-level language of his or her choice as long as dynamic memory was 
supported in that language. Each member had to use the same system and language 
on both programming assignments. The first program consisted of constructing a binary 
search tree and printing it out sideways. The students were given two weeks to complete 
the assignment and they were also provided with the basic algorithms necessary. The 
programming assignment also included a design to be written using a basic 
pseudocode which was provided. About 20 minutes was spent teaching them how to 
design and how to use the pseudocode. They were not graded on the design for the first 
assignment; instead, they were given feedback and graded slightly on the design for the 
second programming assignment. Designs for both assignments were to be at the level 
of detail where one design statement equaled between 3 and 5 source statements. 
Along with feedback for the first design, the students were given a completed design as 
an example of what was expected. Each student was also asked to keep a time sheet 
and record to the nearest 15 minutes the amount of time spent in the morning, 
afternoon, and evening of each day. They were also asked to record time for any 
activity relating to the project such as studying, reading, coding, etc. During the entire 
experiment, the students were reminded at the start of each class and given a few 
minutes to update their time sheets if they had not already done so.  
 

Up to the second programming assignment, both the experimental and control 
groups did the exact same thing. 
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For the second programming assignment, however, the experimental group was 

asked to perform an inspection along with a classmate of each other’s design or of each 
other’s code, or of both. For each inspection, 10 minutes was spent instructing the 
students in the proper technique along with an introduction to the types of errors to look 
for and how to find them. The subjects were told not to rush and not to worry if they did 
not complete the inspection in the time given. The students were required to bring two 
copies of whatever product was to be inspected. They then paired off, spent 20 minutes 
inspecting one of the products, switched, and spent another 20 minutes on the other. At 
this point, the subjects took a few minutes to hand in the materials and update their time  
 

The design inspection instruction was more detailed than that for the code 
inspection as much of the information was the same for both types of inspections and 
did not need repeating. A brief mention was made why inspections are performed. No 
overview or preparation was required of the students as they were all given the same 
assignment and group education was not necessary. The students, however, were given 
5 minutes to look over the partner’s design before the inspection started. The subjects 
were told the partner who did not write the design should read or describe how he will 
implement the design. They were told to read through the design, paraphrasing as they 
went. Every piece of logic was to be covered at least once and every branch was to be 
taken at least once. The objective of finding errors was stressed heavily. An error was 
defined as the following: 
 
• An instance of insufficient detail 
 
• A parameter or routine not defined or defined incorrectly 
 
• A portion of design which, if implemented as stated, could cause a malfunction or error 
in the program. 
 

The subjects were told to look for errors as they progressed through the design. 
Any questions were to be pursued only to the point where the error was recognized. The 
error was to be identified and if the solution was obvious, it was to be noted; otherwise 
the inspectors were to continue through the design. They were told not to redesign, not 
to evaluate alternative design solutions, and not to try and find solutions to errors. Several 
examples of errors they might find were provided. The subjects were told to note the 
errors on a sheet of paper and turn it in after the inspection along with one copy of the 
product. Follow-up was implemented by requiring the students to hand in a corrected 
design at the next class meeting. 
 

The code inspection was implemented 4 days after the design inspection and 3 
days before the program was due. The students were asked to bring two copies of a 
compiled listing, and two copies of the corrected design. The subjects were told the 
partner who did not do the coding was to read through the code making sure it 
implemented the design. Every piece of logic and every branch were to be covered at 
least once. Again the objective of finding errors was stressed and the subjects were 
instructed not to try and find solutions and not to evaluate alternative design solutions. 
Examples of errors were also given to the subjects and the errors found during the 
inspection were to be noted and handed in along with the compiled listing. There really 
was not a follow-up for this inspection as it was not necessary since the program was due 
three days later. 
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Approximately 55 students began the experiment and 32 completed it. Quite a 
few students had already dropped the class from their schedules when the experiment 
began and some of this continued as the experiment progressed. This reduction in class 
size occurs frequently at the undergraduate Level and it was the most significant cause 
of the experimental mortality in this study. Students were also monitored very closely to 
ensure plagiarizing did not take. A few students were removed from consideration for this 
reason. 
 

This high experimental mortality was not expected to bias results as the mortality 
comes from the poorer programmers. This type of programmer is essentially removed 
from consideration across all sections equally. It would be a concern if the poorer 
programmers in one group were dropped while the better programmers in the other 
group were dropped. That is usually not the case and it certainly was not in this study. 
 

Many deliverables along with the tasks were required for a student to be 
considered a member of the study. The requirements for each member of the control 
group were: 
 
• a design, completed program, and time sheet for Part 1 
• a design, completed program, and time sheet for Part 2 
 
The requirements for each member of the experimental group were the same plus one 
additional requirement: 
 
• an inspection of their design or an inspection of their code or both for Part 2, error 
reporting sheets and products were handed in. 
 

The important requirements for this type of design are that the programs are 
similar and that each individual subject uses the same language and system for both 
programs. With these requirements met, it can be assumed that the programming rates 
for both programs are similar. Each member of the experimental group selected VAX 
Pascal as the choice of language. This facilitated the inspecting of each others code as 
each member would have knowledge of the coding language being inspected. 
 

Although this study was designed primarily to measure productivity, data was also 
collected on the number and types of defects found for each inspection. Unfortunately, 
this data could not be analyzed due to the variable specificity with which it was 
reported. Although students were given some examples on how they might report errors, 
these examples were not followed by all students. A standard reporting form might have 
been better. A conclusive analysis of those students performing design inspections versus 
those performing code inspections versus those performing both could not be done due 
to the small sample sizes that would be involved. 
 

The results indicated there was a statistically significant improvement in 
productivity of the experimental group over the control group. The amount of 
improvement appeared to increase for the poorer programmers. 
 
RESULTS 
 

The experimental procedures produced a set of measures for each subject. 
These measures included the time to complete the first program (Time1). the time to 
complete the second (Time2). the age (Ages), the experience in months (Experien). the 
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number of courses (Courses), the number of courses in the language they were using 
(Pascal, named this since most of the subjects used Pascal). the number of different 
languages they knew (Langs), and whether their status was professional or student (Stat). 
 
The analysis chosen was a one-way analysis of variance with a continuous covariate. The 
covariate was the Time I pretest measurement. A model was constructed to express the 
relationship between the covariate (Time 1) and the response variable (Time2). A 
separate model was constructed for the experimental and the control group. The 
analysts then examined the two different models to see if there was a significant 
difference between the two.  
 
Complete mathematical details of Bisant and Lyle’s study can be found in the appendix. 
 
The final model appeared to be: 
 

LTime2(i, LTime1) αi + βiLTimel. 
 
The actual parameter estimates were: 
 
Control    LTime2 = 0.49 + 0.91 LTime1 
Experimental    LTime2 = 1.95 + 0.298LTime1 
 
By taking the antilogarithm of both sides the power equations below are obtained: 
 
Control    Time2 = l.63(Timel)0.91

Experimental    Time2 = 7.03(Time1)0.298

 
The difference between these two models was apparent when some actual values were 
substituted for the Time 1 variable. The average value for Time 1 for both groups was 
15.54. When this value was substituted into the control group model, we obtained a 
value of 19.79 for Time2. When 15.54 was substituted into the experimental group model, 
a value of 15.92 was obtained for Time2.  
 
These results indicated there was a significant improvement in the experimental group as 
a result of using the two-person inspection method. The slower the programmers, the 
more improvement was observed. No comparison could be made for the very fast 
programmers. 
 
RESEARCH CONCLUSIONS 
 
The two-person inspection method appeared to improve novice programmer 
productivity. This conclusion is formed from the significant difference found between the 
power equations used to model both groups. This improvement probably came about 
by detecting and removing errors early in the development process when it required the 
least amount of time. The two-person inspection process probably imparted problem 
knowledge to the participants faster than those who did not use the inspections and this 
might have accounted for some of the improvement. This is in agreement with previous 
research (Buck) on larger team inspections. It appeared as though the less productive, 
programmers may have benefited the most from the technique. The improvement 
observed in this experiment would most likely generalize to professional programmers 
although possibly not to the same degree. 
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Some of the added benefits of inspections include the detailed feedback given to 
programmers on a real-time basis. The programmer learns what types of errors he is 
prone to make and he can concentrate on avoiding these errors and make appropriate 
corrections to his programming style so that his performance improves on future units. The 
results of inspections should never be used as an appraisal of performance since a 
programmer might consciously or subconsciously inhibit the inspection process to make 
himself look better. An additional benefit is the high degree of product knowledge 
imparted to the inspection participants in a short amount of time. This improves the ability 
of the participants in later development and testing. 

 
For the manager concerned with Software productivity, the most important implication 
of this inspection method was an improvement in individual productivity. This could be 
helpful to individual programmers or those programmers that do not have access to 
larger team resources. It should be noted for our purposes that the unit of measurement 
for the study just described is somewhat unusual. It does not use Lines of Code anywhere 
in the analysis; rather, the focus is on the functionality and correctness (i.e. it satisfies the 
specified criteria given) of the code produced and the time taken to produce it. Also, 
less experienced programmers tend to benefit more from this scheme, thus it would be 
appropriate for the manager to make proper adjustments for this.  
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       Other Factors 
3 

 
 
 Other than the 4 factors mentioned above, there are numerous other factors 
which can also affect Software Productivity. Many of these factors have been studied by 
researchers and some of these studies are listed in the table below, along with the 
number of projects researched and the measure of productivity used in the research.  
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                         Source: IEEE Transactions on Software Engineering, Vol 22, No. 10, Oct 1996 
 

MEASURES OF PRODUCTIVITY 
 

Management Guru Peter Drucker once said “That which you cannot measure, 
you cannot manage”. How then can we measure something as abstract as Productivity, 
and furthermore, how do we utilize the figures obtained from our equation and put them 
to use?  
 
 As can be seen, there has been many different measures of productivity and 
throughout the studies detailed in this paper, the measures of productivity has been 
different. The most convenient and widespread measure of productivity is LOC (Lines-of-
code Productivity) because this is easily measurable. The equation for LOC Productivity is 
given by: 
 
      SLOC 
 LOC Productivity =   -------------------------------- 
     Man Months of Effort  
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A more recent (and complicated) variant of LOC productivity is process 
productivity as developed by Putnam and Myers [32].  

 
This measure is defined as: 
 
 
     SLOC 
Process Productivity =  ------------------------------------------- 
    Effort   1/3

    -------           Time   4/3

        B 
 
Where SLOC is developed, delivered lines of source code, Effort is the manpower 

applied to the work measured in manmonths or manyears, B is a skills factor which is a 
function of system size, and Time represents the duration of the work measured in months 
or years. 

 
Of course, the LOC measure has its limitations, because although lines of code is 

a measure of output, this metric is suitable only when comparing projects developed in 
the same language. Lines of code are not comparable across different languages; a line 
of code in COBOL is not equivalent to a line of code in Java. Similarly, other more 
complicated measures such as object point metrics are more appropriate when the 
projects being compared all use object-oriented design.  

 
The other most popular measure is Function point (FP) Analysis. This measure is an 

abstract but workable surrogate measure for the output produced by software projects 
that does apply to heterogeneous projects. This metric is appropriate for measuring 
productivity and the performance of application software projects and is widely used in 
software organizations [25], [3]. Function points are the weighted sum of five different 
factors related to the application's functionality. These factors are: Inputs, Outputs, 
Logical files, Queries, and Interfaces. The IFPUG (International Function Points User Group) 
method of function point analysis is to first compute a raw function point score based on 
a weighted count of the number of the five factors in the application. This raw score is 
then adjusted to control the inherent complexity in the projects based on inputs 
collected on 14 complexity factors. These factors range from complexities in the use of 
data communication features, transaction rate, and data volume, differences in 
performance objectives, online data updating features to complexities from multiple 
sites, and reusability of the application. In practice, companies usually hire IFPUG 
certified function point experts with years of experience in the field to do the analysis.  
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       Productivity Function 
4 

 
 
SOFTWARE PRODUCTIVITY FUNCTION 
 
 It would be helpful to the manager to be able to assess the productivity level of 
his firm. Indeed, given a mathematical function of how various managerial factors affect 
productivity, the manager can then determine an organizational strategy for increasing 
productivity, while staying within budget.  
 

While it is unrealistic to devise a universal measure of productivity across all firms, 
there are some common steps involved in devising a productivity function for the firm. 
First off, the manager can decide on a suitable measure of productivity (LOC/FP etc) 
based on the goals of the organization. Then, he can decide which factors of 
productivity are relevant in his firm. For example, colocating the entire project team may 
be feasible for small software companies but may just be impractical for software giants 
like Microsoft.  

 
With the different factors of productivity, the manager can construct a software 

productivity function, letting the measure of productivity be the dependent variable, 
while making each factor listed above the explanatory variables.  
 
A regression function: 
 

Yi = a1 + a2X2 + a3X3 + a4X4 + … + anXn + ui

 
(where Y is the productivity and X are the explanatory variables). Can be constructed 
and the coefficients of the regression can be determined by running regression tests. 
With this productivity function and the coefficients, managers can determine the extent 
of which the factors affect productivity.  
 

Of course, as with normal regression, problems such as multicollinearity, 
heteroskedasticity, autocorrelation and measurement may be present. For each of these 
problems, we may apply the standard techniques to overcome them. For example, 
team size and collocation are highly correlated (multicollinearity) because they both 
have to deal with communication in the organization. In this case, it is difficult or 
impossible to isolate their individual effects on the dependent variable. But 
multicollinearity can some times be overcome or reduced by collecting more data, by 
utilizing a priory information, by transforming the functional relationship, or by dropping 
one of the highly collinear variables.  
  

Another plausible problem is heteroskedasticity: If the OLS assumption that the 
variance of the error term is constant for all values of the independent variables does not 
hold, we face the problem of heteroskedasticity. This leads to unbiased but inefficient (ie, 
larger than minimum variance) estimates of the standard errors (and thus, incorrect 
statistical tests confidence intervals).  One test for heteroskedasticity involves arranging 
the data from small to large values of the independent variable, X, and running two 
regressions, one for small values of X and one for large values, omitting, say, one-fifth of 
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the middle observations. Then, we test that the ratio of the error sum of squares (ESS) of 
the second to the first regression is significantly different from zero, using the F table with 
(n-d-2k)/2 d.f, where n is the total number of observations, d is the numbers of omitted 
observations and K is the number of estimated parameters. 
If the error variance is proportional to X2 (often the case), heteroskedasticity can be 
overcome by dividing every term of the model by X and then re-estimating the 
regression using the transformed variables.  
 
Other than statistical errors, the manager must face the problems of data collection and 
verifying that the data being used is accurate. But most importantly, the manager has to 
tailor the software productivity regression model to fit the needs of the organization, and 
to design suitable ways to test the model.  
 
CONCLUSION 
 
There are many factors that affect Software Productivity in an organization. The extent to 
which these factors influence productivity varies across firms and depends on the type of 
project. Key factors that can improve productivity to a great extent are improving 
communications, and to re-use as much software components as possible.  
 
It will be helpful to the manager if there was a systematic way of approaching the 
factors that increase productivity, so as to find the most cost effective way of increasing 
output. To this end, it is recommended that the manager first defines a measure of 
productivity and then construct a regression function to determine the extent of which 
each factor affects this measure.  
 
With this approach, the manager will be able to gauge the effectiveness of the factors 
of productivity, and with this understanding, make managerial decisions to improve 
productivity in the organization.  
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       Appendix 
5 

 
 
MATHEMATICAL DETAILS FOR THE BISANT AND LYLE’S STUDY 
 

Table II summarizes the Timel and Time2 measures. A logarithmic transform was 
used on the Time 1 and Time2 measurements to reduce the heterogeneity of the residual 
variance and to allow for the use of linear regression in the analysis. In taking the natural 
logarithm of Timel and Time2, LTime1 and LTime2 were produced. A scatter diagram of 
LTimel versus LTime2 is shown in Fig I with the regression lines for both groups shown. 
 

The regression line with the greater slope is the line for the control group. 
 

 
The regression lines indicated a difference between the two groups. To see if the 
difference was significant, a model was constructed as shown below, 
 
LTime2(i, LTimel) = αi + βi LTime1 
 
where i represents either the experimental group or the control group. In other words, The 
model represented a linear relationship between LTime2 and LTime1, For each group, 
there was a separate slope (β) and intercept (α) describing the linear relationship for that 
group. Computer analysis revealed a coefficient of determination (R2 of 0.58 meaning 
the model explained 58 percent of the variation observed in LTime2. Several F tests 
showed the model was significant (p = 0.0001), there was a shift in location between the 
two groups once correction was made for the covariate LTime1 (p = 0.0277), at least one 
of the slopes was not zero (p = 0.0001), and the slopes of the two lines were different (p = 
0.0068). The F tests above assume that the residuals (difference between the actual and 
expected values) of the model are normally distributed. To validate this assumption, a 
Shapiro-Wilk W test was made on the normality of the residuals with the null hypothesis 
"the data is normally distributed.” The hypothesis was not rejected for the control group 
(p = 0.128), the experimental group (p = 0.4). or for both groups together(p = 0.128). 
 
The appropriateness of the model was evaluated by examining the scatter diagrams of 
the residuals versus the other variables for which data had been collected. Two of the 
typical scatter diagrams are shown for the LTime1 variable in Fig. 2 and for the Experien 
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variable in Fig. 3. it was clear the residuals were distributed with the same variability over 
the range of the variables indicating there were no effects from these variables which 
were not al ready explained by the model. Similar results were ob served for the other 
variables (Age. Courses, Langs, and Stat). An exception was the Pascal variable 
representing the number of courses in the language the subjects were using. The scatter 
diagram for this variable is seen In Fig. 4. When added to the model, it raised the 
coefficient of determination to 0.68. However, the model was less significant (p = 0.001 
1), there were no longer significant shifts in location (p = 0.1483 for the group effect, p = 
0.2918 for the Pascal effect), and the difference in slopes was less significant (p = 0.043). 
More importantly, however, the effect of the Pascal variable was counterintuitive. The 
observed effect indicated the more courses the subjects had in the language they were 
working with, the longer it took them to complete the program. This inconsistency along 
with the small effect of the Pascal variable caused suspicion that a clustering took place 
due to the limited representation for the different levels of that variable. For this reason, 
the variable was not included in the model. 
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