SYMBOLIC PROCESSING FOR INTELLIGENCE

Fourth Lecture
On unified theories of cognition
The William James Lectures
Harvard University

Allen Newell
Computer Science and Psychology
Carnegie-MeIIon University

11 March 1987

REPRISE: HUMAN COGNITIVE ARCHITECTURE
What aspects are dictated by the nature of its world?
The real-time constraint on cognition

From neural technology, to get mind-like behavior

Only two small system levels available
The yield —

1. Neural, cognitive, rational, social timescales

2. Computational symbolic systems

3. Four levels of the cognitive band

Architecture — symbolic access @10 ms
Elementary deliberation (automatic) @100 ms
Selection of prepared operators (controlled)®1 s
Composed operators (full cognition)®10 s

4. Recognition-based architecture

5. Continual shift to recognition (learning)

PLAN OF THE LECTURE

Present a specific architecture for cognition — Soar

The basis for a unified theory of cognition

Focué is on functionality (for this lecture)
How Soar attains intelligent behavior
_How th»e requirements dictate its structure
The architectural features derived in Lecture 3

Also the details of making it be intelligent

1. Architecture for central cognition
2. Learning from experience

3. The total cognitive system

4. Functionality and ability

5. Qualitative aspects of human cognition

MAJOR FEATURES OF CENTRAL ARCHITECTURE
Cognition, but not perception or motor behavior

1. Problem spaces to represent all tasks
Little knowledge yields search, lots yields direct path
Problem-solving architecture (no process substrate)
2. Productions for all long-term memory (symbols) |
Search control, operators, declarative knowledge
3. Attribute/value representation medium for all things |
4. Preference-based procedure for all decisions
Preference language: accept/reject, better/worse
5. Goals (and goal stack) to direct all behavior
| Goals are creéted by the system itself
At performance time from impasses, not in plans |
Operators perform the function of deliberate goals

6. Chunking of all goal-results occurs continuously

PROBLEM SPACE ARCHITECTURE

Task
Implementation
+
Search-control
Knowledge

Blocks World A
Problem Space [E;'\ B

A

Al g — 1]

C|[B]
N\

o|»|w| |>

O] w] »

Primitive functions
Select a problem space

Select a state from those directly available

Select an operator

'Apply the operator to obtain new state

The deliberative acts of architecture

PRODUCTION SYSTEM
Familiar view — Collection of condition-action rules
Better — Content-addressed memory, recognition system

Soar production system (OPS5-like)

c,C — A

Conditions are patterns c,C,C— A
c,c — A,A

Obtain all instantiations [W,W,W, ...]

Actions only add elements to working memory =
Elements leave when no longer accessible
No conflict resolution — Entirely parallel

Example Soar production
(sp propose-operator*comprehend
(goal <g> tproblem-space <p> tstate <s>)
(problem-space <p> tname base-level-space)
(state <s> tobject tinput <i>)
(box ton table ton-top nothing)
— (signal <i> tattention yes)
(operator <o> thame comprehend)
(preference <o> trole operator tvalue acceptable
tgoal <g> tproblem-space <p> tstate <s>))

DECISION CYCLE

DECISION 1 DECISION 2 DECISION 3
Elaboration Decigion ‘l/ ‘1’
\L Phase \L Procgdure ‘1’ \l’ ‘L \1, \l, \L ‘l’
by UV LY
Gather >
Preferences
Quiescence \l’ Replace
Interpret —> Context
Preferences Object
R Impasses
e Tie
Create Nochange “
Sbges | | Reject
Conflict
Elaboration phase produces preferences
- Context
(S13 acceptable for supergoal state) G,|P,41S410.
Nochange]
(S13 rejected for supergoal state) G, P_]g_ S, -T-I
ie
(Q2 acceptable for operator) L]G4P,4IS,IO.

(Q7 acceptable for operator)
(Q7-better than Q2 for operator)

~ (Q9 indifferent to Q6 for operator)

IMPASSES AND PROBLEM SPACES

ALL THE WAY DOWN

Long-term

Task-implementation and search-control knowledge

8

Task
operator
selection

NN

Evaluagion

operator
implethentatig

VARVERY]

implementation
[{6-CQ-0

Task T
operator opeyator
implemeftation selettion
< <3
Subtay Evaluagion
operajo operatpr
seilecfon implerhentatig

<"n'

Task
operator
jmplementation

."
»,

Subts
operafor
selecyon

Blocks-world space

Initial
state
Al
BC| A>T A>T=—
A~C A->C-
C>A C-*A-
tie
impasse
selection
space

EXAMPLE OF OPERATION

CA| B>C =

@)=

Desired

B
Al A-B= [C

[1 E(A>C)=[-] E(C2A)==[~~]

E(C>A)
E(A->T)

nochange
impasse

evaluation

space

Cl A C=> |B

A
C

nochange
impasse

1
Al
Bd C+A— [B] -

E _
B*A— -

CHUNKING — LEARNING FROM EXPERIENCE
Converts goal-based problem solving into productions
Actions — Based on the results of the subgoal

Conditions — Based on the pre-impasse situation
The aspects necessary to produce the actions
1. Chunks are produc;tions — processes not data |
2. A form of permanent goal-based caching
3. Chunks generalized implicitly
Ignore whatever the problem solving ignored
4. Learning occurs during problem solving
5. Chunking applies to all subgoals
Search control, operator implementation, ...
Whenever knowledge is incomplete or inconsistent
6. Learns only what system experiences

7. General mechanism for moving up the P-D isobar

CHUNKING — ILLUSTRATION

(ksolve
Im pacs‘e_

e

® e 06>

Chunk1:
If the problem-space is simple-blocks-world and
the state is one proposition different than the goal and
the state has block1 and block2 clear and
block1 is on the table and
the desired state has block1 on block2
then make a best preference for the operator that
moves block1 onto block2.

11

R

ie«— [AlC]:

CHUNKING IN THE BLOCKS WORLD

oN>
DPNA

@ >0

> =0
R

12

TOTAL COGNITIVE SYSTEM

Brief overview now, more later

Basic concern — To get interface right

Long term memory

Encoding Cognitive Decoding
productions productions productions
4 r o

[Goal stack]
‘Working memory

(I J *
Perceptual Motor
Systems Systems
|| |
---[Senses]---==--""""TTTTTTTT [Muscles]---

1 T External environment l l

- In terms of peformance

[P —> E]—> C — [D — M]

In terms of structure and learning

- [pP]— [E — ¢ —> D]—> [M]

13

R1-SOAR: CONFIGURATION TASK

R1 expert system (McDermott, 1980; DEC)

Input: An order for a Vax computer (a dozen items)
Processor, bus, primary memory, disks, graphics, ...

Output: Information to assemble the system (ten pages)
Filled out and verified order
Spatial layout in cabinets with all connections

Take into account many factors

Cost of components, power demands, cable lengths,
ordering on bus, component compatibilities, ...
R1 characteristics (1984)
3300 Ops5 productions
10000 components (data base)

About 1000 production cycles for a typical task

14

R1-SOAR: PROBLEM SPACES
Second version of R1-Soar

Configure modules and backplaces

Configure a backplane(type)

order put backplane get backplane put modules
backplane in box from order in backplace
put backplane consider put module decrement next
in box section next section in backplace power module
put board consider
in slot next slot

15

PERFORMANCE AND LEARNING ON R1-SOAR

No During After
Learning Learning Learning

Base 1731 485 7

[232] - [+59] [291]
Partial 243 111 7 _

[234] [+14] [248]
Full . 150 90 | 7

[242] [+12] [278]
Tasks

Base: No search-control knowledge
Partial: Two key search-control rules
Full: Search control equivalent to R1’s

Units

Decision cycles (e.g., select operator)
[numbers of rules]

16

DESIGNER-SOAR: ALGORITHM DESIGN
Steier (1986)

Original system: Designer (Kant, Newell, Steier)
Designer-Soar is to complete and extend Designer
Target is design of convex hull

Major problem spaces:

Algorithm Design (top level)
States: data flow desc»riptions of algorithms
Operators: modify descriptions, focus attention
Developmental Evaluation
States: algorithm descriptions with data
Operators: exécute descriptions on data
Application Domain
Statés: domaih objects (sets, figures)

Operators: modify domain objects

DESIGNER-SOAR: SIMPLE EXAMPLE

Intersection
Given two sets, produce set of common elements
Memory to hold one input set
—>{M1} —>
Generator to generate set elements
—>{M1}—>[Gl1]—>
Test io check if element is in other set
——»{Ml}-—>[G1]-—>[T1]——>
Memory to hold second input set for test

—->{M1}-—>[G1]—->[T1]-——>

- —>{M2}
Memory to build output set
—->{M1}—->[G1]—->[T1]—->~{M3}-—>

—>{M2}

18

CYPRESS-SOAR: LEARNING ALGORITHM DESIGN

‘Steier (1986)
Design-level of Cypress (D. Smith, 1986)

Algorithm design space (partial algorithms)

Logical-inference space (assertions) — Not incorporated

Insertion Merge Quicksort

Search sort sort full bad

control . spec spec

" L Minimal 303 342 476 1132
o A

5 Full 140 140 140 266

ﬁ ; Minimal 202 236 226 238
VoA

£ § Full 135 140 130 188

Across task transfer (minimal search control)
Prior learning
Insertion-sort 207% 29686% 42188%

Mergesort 26989% 206% 417 87%

Quicksort 27300% 29285% 204%

19

SUMMARY OF TASKS

Many small and modest tasks (21), many methods (19)
Eight puzzle, Tower of Hanoi, Waltz labeling
Dypar (NL parsing), Version spaces, Resolution TP
Generate & test, Hill climbing, Means-ends analysis
Constraint propagation

Larger tasks (some in progress)
R1-Soar: 3300 rule industrial expert system (25%)
Neomycin-Soar: Revision of Mycin
Designer-Soar: Algorithm discovery
Cypress-Soar: Divide-&-conquer algorithm designer
(Coder-Soar: Algorithms to code)
(Weaver-Soar: VLSI router)

Learning (chunking)

Learns on all tasks it performs
Learns search control, operators, spaces
‘Improves with practice, transfers to other tasks

Explanation-based generalization

Outside guidance (by chunking)

Abstraction planning (by chunking)

Constraint compilation (by chunking)

Task acquusmon :
Builds spaces from external specs (by chunking)

20

HOW DOES SOAR APPROXIMATE A KL SYSTEM
1. Computationally universal
Necessary, but not deal with real time constraint
2. Production systems
Real time via recognition
Abandon fixed conflict resolution
3. Decisioh process
Open to quiescence to get all that is available
3. Impasses
Seek knowledge whenever it is not available
Never rest on apriori fixed finite mechanism
Errors are due to knowing the wrong thing
4. Chunking
Continually convert slow processes to fast ones

Issues — Sharing knowledge, scope of chunking

21

MAPPING SOAR INTO HUMAN COGNITION

Productions @10 ms
Symbol system (access and retrieve)
Recognition system (content addressed)
Parallel operation
Involuntary
Unaware of individual firings
Duration: Match a function of complexity
(Should be simpler match than Ops5, possibly)

Decision cycle ‘@100 ms
The smallest deliberate act
- Accumulates knowledge for an act and decudes
The smallest unit of serial operation
Involuntary (exhaustive)
Awareness attends decision (products, not process)
Duration: Longest production chain (to quiescence)

Primitive operators ®1s
Serial operation
Primitive observable thinking acts
Duration: Sequence of decision cycles (2 minimum)
Goal-oriented |

Goal attainments ®10s
Smallest unit of goal attainment
- Smallest non-primitive operators
Smallest unit of learning (chunking)

22

SOAR AND THE SHAPE OF HUMAN COGNITION #1
Does Soar have the right qualitative shape?

1. Has general features derived from real-time constraint
Symbol system, automatic/controlled behavior,
recognition-based, fast-read/slow-write,
continual shift to recognitioh (learns from experience)

| 2.- Behaves intelligently
'But’ is not completely rational (only approximates KL)

3. Goal oriented
But not just because it has learned goals
Goals arise out of its interaction with environment

4. Interrupt driven
Depth-first local behavior, progressive deepening

5. Default béhavior is fundamentally adaptive

Does not have to be programmed to behave

23

SOAR AND THE SHAPE OF HUMAN COGNITION #2
6. Serial in midst of parallelism
Autonomous behavior (hence an unconscious)
7. Recognition is strongly associative
Does not have access to all that it knows
Remembering can be a problem — can work at it
-~ 8. Not know how it does things
Learned procedures are non-articulatable
Chunking accesses WM trace, not productions
Can work interpretively from declarative procedures
9. There is meta-awareness or reflection
Can step back and examine what it is doing
10. Indefinitely large knowledge
11. Aware of large amounts of immediate detail

But focused, with a penumbra

24

ISSUES AND LACUNA IN SOAR

1. Things not in Soar 4.4, but coming in Soar 5
P-E-C-D-M
Full development of perceptual mechanisms
Full development of mbtor system
Single state principle
Less powerful match (no equality testing)
2. Default behavior is not quite all in the architecture
Currently default productions avoid impasse pits
3. Not demonstrated yet — although consonant
Flexibility to the point of non-brittleness
Full scope of Iearhing
4. Missing major aspects (Require strLlcturaI additions?)

Emotion, dreaming, imagery, ...

25

SUMMARY:
SYMBOLIC PROCESSING FOR INTELLIGENCE

A specific architecture for cognition — Soar
The central construct of a unified theory of cognition
Focus is on functionality — being intelligent
1. Architecture for central cognition
| Problem spaces, productions, goals
Decision cycle, impasses
2. Learning from experience
Chunking, at the production level
3. The total cognitive system (P-E-C-D-M)
Encoding & decoding — Uncontrolled productioﬁs
4. Functionality and ability
Incdrpo'rates most mechanisms of' intelligence -

5. Qualitative aspects of human cognition

26

SOAR DESIGN AND THE MULTIPLE CONSTRAINTS

1. Behave flexibly — Yes
2. Adaptive (rational, goal-oriented) behavior — Yes
3. Operate in real time — Yes
4. Rich, complex, detailed environment

Perceptual detail — Interface only

Use vast amounts of knowledge — Yes

Motor control — Interface only
5. Symbols and abstractions — Yes
6. Language, both natural and artificial — No
7. Learn from environment and experience — Yes
8. Acquire capabilities through development — No
9. Live autonomously within a social community — No
10. Self awareness and a sense of self — No

11. Be realizable as a neural system — No

12. Arise through evolution — No

27

REFERENCES, LECTURE 4
On r

J. Laird, P. Rosenbloom & A. Newell, "Soar: An
architecture for general intelligence", Artificial
Intelligence, 1987 (in press).

Copies of tech report in Harvard Psychology Library

J. Laird, P. Rosenbloom & A. Newell, "Chunking in Soar:
The anatomy of a general learning mechanism"”,
Machine Learning, vol. 1, 1986, pp. 11-46.

General references for Lecture 4

J. R. Anderson, The Architecture of Cognition, Cambridge
MA: Harvard University, 1983.

J. Laird & P. Rosenbloom, "Mapping explanation-based
generalization onto Soar", Proceedings of AAAI-86,
National Conference on Artificial Intelligence, Menlo Park
CA: AAAI, 1986.

28

SOAR AND ACTIVATION
1. Multiple roles of activation
Determines access path (Quillian, many others)
The representational media (cbnnectionism)
Determines processing ratg (Anderson)
2. General concern abolut 'doing real tasks
Activation systems still good only for analysis
3. Specific theoretical concern about learning
Crypto-knowledge constraint
Tried activation-based productions in Xaps2
4. Yielding interesting new forms of representation media
Properties of continuity, coarse coding
5. The issue of approximation
Activation cannot bé critical as duration increases

Soar as approximation to an activation-based system

29

SOAR AND SCHEMAS
1. Knowledge is organized — A bésic truth
2. Schemas are a data-structure solution to this
"Real schemas" — The kind we program
They are rigid and unadaptive
Large-grain-size argument is misplaced
Bécause it confuses structure with behavior
3. Knowledge organization in Soar
The declarative representation
Attributes and values (as opposed to lists)
No inheritance, defaults, attached pr_ocedures
Productions provide dynamic, complex semantic net
Inheritance comes in the elaboration phase

Attached procedures realized by impasses

Key: Problem spaces are an action-oriented encoding

30

Higher
organization
Goals
Control

Learning

SOAR AND ACT*

Differences

ACT*

Declarative
procedural

None
Deliberate
learned

Activation
variable rate

Compilation
composition
proceduralization

- Tuning

strengthening
generalization
discrimination

Soar

Procedural

Problem spaces

Impasse created

All-or-none
cycles

Chunking

31

USING KNOWLEDGE FOR CONTROL

Standard Al scheme: Methods + Selection

Method = Procedure + Deliberate-subgoals
Weak methods are basic to intelligent action

Generate-test, hill climbing, progressive deepening,

means-ends analysis, minimax, constraint probagation
Soar uses implicit methods for the weak methods

Implicit method = Conjoining independent heuristics
Major implications

Knowing leads directly to doing

No need to learn method control structure — Emerges
Permitted by two conditions

Soar — Problem spaces and production systems

Weak method — Search related and simple

32

