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Summary

We ask first whether we need a theory of

creative thinking distinct from a theory of
problem solving. Subject to minor qualifications,
we conclude there 1s no such need — that we call
problem solving creative when the problems

solved are relatively new and difficult. Next,

we summarize what has been learned about problem
solving by simulating certain human problem solv-
ing processes with digital computers. Finally,

we indicate some of the differences in degree that
might be observed in comparing relatively creative
with relatively routine problem solving.
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THE PROCESSES OF CREATIVE THINKING
Allen Newell, J. C. Shaw, and H. A, Simon*

what 1s meant by an "explanation" of the creatlve process?
In the published literature on the subject, the stages of
thought in the solutlion of difficult problems have been des-
cribed, and the processes that go on at each stage discussed.
Interest has focussed particularly on the more dramatic and
mysterious aspects of creativity — the unconscious processes
that are supposed to occur during "{ncubation," the imagery
employed in creative thinking and its significance for the
effectiveness of the thinking, and, above all, the phenomenon
of "i{llumination," the sudden flash of insight that reveals the
solution of a problem long pursued. Experimental work — to the
limited extent that it has been done — has been most concerned
with directional set, including the motivational and cognitive
conditions that produce set and that alter set, and inter-
personal differences in "inappropriate' persistence of set
(atereotypy) .

All of the topics we have mentioned are interesting
enough, and are appropriate parts of a theory of creative
thinking. In our own orientation to creativity, however, we
have felt the need for a clearer idea of the overall require-
ments and aims of such a theory. We propose that a theory of

creative thinking should consist in:

¥Carnegie Institute of Technology
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l. Completely operational specifications* for the
behavior of mechanisms (or organisms) that, with appropriate
initial conditions, would 1ﬁ fact think creatively;

2. a demonstration that mechanisms behaving as specified
(by these programs) would exhibit the phenomena that commonly
accompany creative thinking (e.g., incubation, illumination,
formation and change in set, etc.);

3. a set of statements — verbal or mathematical — about
the characteristics of the class of specifications (programs)
that includes the particular examples specified.

Stated otherwise, we would have a satisfactory theory
of creative thought if we could design and build some mechanisms
that could think creatively (exhibit behavior Just like that of
a human carrying on creative activity), and if we could state
the general principles on which the mechanisms were built and
operated.

When it 1s put in this bald way, these aims sound utopian.
How utopian they are — or rather, how imminent their realization —
depends on how broadly or narrowly we interpret the term "creative."
If we are willing to regard all human complex problem solving as
creative, then — as we shall point out — successful programs for
problem-solving mechanisms that simulate human problem solvers

already exist, and a number of their general characteristics are

*As we shall explain later, we propose that such a set of specl-
fications take the form of a program, as that term 1s used in
the digital computer field, and we will henceforth refer to them
as "programs."
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known. If we reserve the term "ereative" for activities like
diseovery of the special theory of relativity or composition
of Beethoven's Seventh Symphony, then no example of a creative
mechanism exists at the present time.

However, the success already achieved in synthesizing
meéhanisms that solve difficult problems in the same manner as
humans is beginning to provide a theory of problem solving that
is highly specific and operational. The purpose of this paper
is to draw out some of the implications of this theory for
creative thinking. To do so is to assume that creative think-
ing 1s simpl& & special kind of problem-solving behavior. This
seems to us a useful working hypothesis.

We start by discussing the relation of creative thinking
to problem solving in general, and by inquiring to what extent
existing problem-solving programs may be considered creative.
Next we sketch the theory of problem solving that underlies
these programs, and then use the theory to analyze the programs,
and to compare them with some human problem-solving behavior
exhibited in thinking-aloud protocols of subjects in the
laboratory. Finally, we consider some topies that have been
prominent in discussions of creativity to see what this analysis

of problem solving has to say about them.

Problem Solving and Creativity

In the psychological literature, "creative thinking"

designates a special class of activities, with somewhat vague
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and indefinite boundaries (see, e.g., Johnson, pp. 166-167) .
Problem solving is ealled creative to the extent that one or
more of the following conditions are satisfled:

1. The product of the thinking has novelty and value
(either for the thinker or for his culture).

2. The thinking 1is unconventional, in the sense that 1t
requires modification or rejection of previously-accepted ideas.

3. The thinking requires high motivation and persistence:
either taking place over a considerable span of time (con-
tinuously or 1ntermittently), or oceurring at high intensity.

4., The problem as {nitially posed was vague and 111-
defined, so that part of the task was to formulate the problem
itself.

Vagueness of the Distinction

A problem-solving process can exhibit all of these
eharacteristics to a greater or lesser degree, but we are
unable to find any more specific eriteria separating creative
from non-creatlve thought processes. Moreover, the data
currently avallable about the processes involved in ereative
and non-creative thinking show no particular’differences
between the two. We may cite, as example, the data of Patrick
(11,12) on the processes involved (for both professionals and
amateurs) in drawing a picture or writing a poem, Or the data
of de Groot (1) on the thought processes of chess players.

Not only do the processes appear to be remarkably similar from

one task to another — agreeing well with wallast' (16) account
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of the stages in problem solving — but it is impossible to
distinguish, by looking solely at the statistics deseribing
the processes, the highly skilled practitioner from the rank
amateur,

Similarly, there is a high correlation between creativity
(at least in the sciences) and proficiency in the more routine
intellective tasks that are commonly used to measure intelligence.
There is little doubt that virtually all the persons who have
made major creative advances in science and technology in
historic times have possessed very great general problem-solving
powers (4, pp. 431-432).

Thus, creative activity appears 8imply to be a special
class of problem-solving activity characterized by novelty,
unconventionality, persistence, and difficulty in problem
formulation.

Simulation of Problem Solving

As we indicated earlier, the theory of problem solving
we are putting forth derives from mechanisms that solve problems
in the same manner as humans, and whose behavior can be Oobserved,
modified, and analyzed. The only available technique for
constructing problem solvers 1s to write programs for digital
computers; no other physical mechanisms are complex enough.

The material in the present pPaper rests mostly on several
programs that we have constructed. These are:

1. The Logic Theorist. The Logic Theorist is a computer

program that i1s eapable of discovering proofs for theorems in
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elementary symbolic logic, using heuristic techniques similar
to those used by humans. Several versions of the Logilc
Theorist have been coded for a computer, and a substantial
amount of experience has been accumulated with one of these
versions and some of its variants (6, 7, 8, 9)-.

o, The Chess Player. We have written a program that

plays chess. It 1s just now belng checked out on the computer,
but we have done a good deal of hand simulation with the
program so that we know some of its more immedlate character-
1stics (10).

Wwhen we say that these programs are gsimulations of human
problem solving, we do not mean merely that they solve problems
that had previously been solved only by humans — although they
do that also. We mean that they solve these problems by using
techniques and processes that resemble more or less closely
the techniques and processes used by humans. The most recent
version of the Loglic Theorlst was designed explicitly as a
simulation of a (particular) human problem solver whose
behavior had been recorded under laboratory conditions.

Although the RAND-Carnegie group is the only one to our
knowledge that has been trying explicitly to construct programs
that simulate human higher mental processes, a number of workers
have been exploring the capabilities of computer programs to
solve complex and difficult problems. Many of these programs
provide additional jnformation about the nature of the problem-

solving process. Some of the more relevant are:
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3. Musical Composition. A computer program has been

written and run on the ILLIAC that composes music employing
Palestrina's rules of counterpoint. Some of its music has
been performed by a string quartet and tape-recorded, but as
far as we are aware, no description of the program has been
published. Other experiments in muslical composition have also
been made.

4. Chess Playing. Two programs besides ours have been
written that play chess. Although both of these proceed in
a2 manner that is fundamentally different from the ways humans
play chess, some of their features provide illuminating com-
parisons (10).

5. Design of Electric Motors. At least two, and probably

more, computer programs have been written, and are now being
used by industrial concerns, that design electric motors.
These programs take as their inputs the customers! design
specifications, and produce as their outputs the manufacturing
specifications that are sent to the factory floor. The programs
do not simply make calculations needed in the design process,
but actually ecarry out the analysis itself and make the
decisions that were formerly the province of the design
engineers.

The main objective of these motor design programs, of
course, is to provide effective problem-solving routines that
are economical substitutes for engineers. Hence, these programs

simulate human processes only to the extent that such processes
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are believed to enhance the problem-solving capabilities and
efficiency of the programs.

6. Visual Pattern Recognition. A program has been

written that attempts to learn a two-dimensional pattern — like
an "A" — from examples. The program was developed by Selfridge
and Dineen (2, 15). Although only partly successful, 1t was

a pioneering attempt to use computer simulation as a technique
for investigating an area of human mental functioning.

Is the Logic Theorist Creative?

The activities carried on by these problem-solving
computer programs lie in areas not far from what is usually
regarded as "creative." Discovering proofs for mathematical
theorems, composing music, designing engineering structures,
and playing chess would ordinarily be thought creative 1f the
product were of high quality and original. Hence, the
relevance of these programs to the theory of creativity is
clear — even if the present programs fall short of exact
simulation of human processes and produce a fairly mundane
product.

Let us consider more specifically whether we should
regard the Logic Theorist as ereative. When the Loglc Theorist
18 presented with a purported theorem in elementary symbollc
logic, it attempts to find a proof. In the problems we have
actually posed it, which were theorems drawn from Chapter 2

of Whitehead and Russell's Principia Mathematica (17), it has

found the proof about three times out of four. The Logle
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Theorist does not pose its own problems — it must be given
these — although in the course of seeking a proof for a
theorem it will derive the theorem from other expressions and
then attempt to prove the latter. Hence, in proving one
theorem, the Theorist is capable of conjecturing other theorems
and then trying to prove these.

Now no one would deny that Whitehead and Russell were

creative when they wrote Principia Mathematica (17). Their

book 18 one of the most significant intellectual products of
the twentieth century. If it was creative for wWhitehead and
Russell to write these volumes, it 18 possibly creative for
the Logic Theorist to reinvent large portions of Chapter 2 —
rediscovering in many cases the very same proof's that Whitehead
and Russell discovered originally. Of course the Logic
Theorist will not receive much acclaim for its discoveries,
since these have been anticipated, but, subjectively although
not culturally, its product is novel and original. 1In at
least one case, moreover, the Logic Theorist has discovered a
proof for a theorem in Chapter 2 that is far shorter and more

elegant than the one published by Whitehead and Russell.l/

1/ Perhaps even this 1s not ereative. The Journal of Symbolic
Logic has thus far declined to publish an article, co-
auEHored by the Logic Theorist, describing this proof. The
principal objection offered by the editor is that the same
theorem could today be proved (using certain meta-theorems
that were available neither to Whitehead and Russell nor the
Loglc Theorist) in a much simpler way.
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If we wish to object seriously to calling the Logic
Theorist creative, we must rest our case on the way 1t gets
the problems it tackles, and not on its activity in tackling
them. Perhaps the program 1s a mathematical hack, since it
relies on Whitehead and Russell to provide 1t with significant
problems, and then merely finds the answers to these; perhaps
the real creativity lies in the problem selection. This
certainly is the point of the fourth characteristic we listed
for creativity. But we have already indicated that the
Theorist has some powers of problem selection. In working
backwards from the goal of proving one theorem, it can con-
jecture new theorems — or supposed theorems — and set up the
subgoal of proving these. Historically, albeit on a much
broader scale, this is exactly the process whereby Whitehead
and Russell generated the theorems that they then undertook
to prove. For the task they originally set themselves was to
take the basic postulates of arithmetic (as set férth by Peano
and his students), and to derive these as theorems from the
axioms of logic. The theorems of Chapter 2 of Princlpia were
generated, as nearly as we can determine the history of the
matter, in the same way that subproblems are generated by the
Loglc Theorist — as subproblems whose solution would lead to
the solution of the problem originally posed.

We do not wish to exaggerate the extent to which the
Logic Theorist is capable of matching the higher flights of

the human mind. We wish only to indicate that the boundary



between 1ts problem-solving activities and activities tnat are

important examples of human creativity is not simple or otvious.

An Abstract Model of Problem-—Solving Behavior

We turn next to the general theory of problem solving,
cnly returning later to issues that are specific to the "crea-

tive" end of the problem-—solving spectrun.

Definition of "Problem"

The maze provides a sultable abstract model for most Kings
of problem-solving activity. A maze is a set of paths (possibply
partly overlapping) some subset of which are distinguished from
the others by having rewards at their termini (see Fig. 1).

These latter are the "correct" paths; to discover one of ther
1s to solve the problem of running the maze.

We can abstract one stage further, and characterize proktlem—
sclving by the following rubric: Given a set, P, of elements,
to find a member of a subset, S, of P having specified properties.
Here are some examples:

a. 8Solving a crossword puzzle. Take as P all possible
combinations of letters of the English alphabet that will fill
the white squares of the puzzle. The subset S comprises those
combinations in which all consecutive linear horizortal and
vertical sequences are words that satisfy specified definitions.

b. Finding the combination of a safe. Take as P all

possible settings of the dials of the safe; and as S those
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Fig. | — A problem maze, alternatives at choice points,
m=2; minimum length of path to solution, k=3.

The shortest

path to a solution is given

by the choices 2—1—2; it runs from
choice point a,, through b, and

cz to dg,

the solution.
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particular settings that open the safe. As safes are usually
constructed, S consists of a single element.

¢. Making a move in chess. Take as P the set of all
possible (legal) moves; as S, the set of "good" moves, where
the term "good" reflects some set of criteria.

d. Proving a theorem in logic or geometry. Take as P
the set of all possible sequences of expressions in a formal
language for logic (or geometry, respectively); and as S the
subset of sequences that: (a) are valid proofs, and (b) terminate
in the specified theorem.

€. Programming a computer to invert a matrix. Take as P
the set of all possible Sequences of computer instructions;
and as S a particular sequence that will perform the specified
matrix inversion.

f. Translating a German article into Englisnh. Take as P
the set of all possible 8equences of English words (of length,
8ay, less than L); take as S the subset of sequences that: (a)
satlsfy certain criteria of Engllish syntax and style, and (t)
have the same meaning as the German originai.

g€- Designing a machine. Take as P the set of all possible
parameter values for a machine design; take as S the subset of
parameters values that: (a) satlsfy the design specifications,
(b) meet certain criteria of cost minimization.

In examples (d), (e), (f) the interpretation in terms of
the maze model can be carried a step further by identifying the
elements of the Sequences mentioned there with the Buccessive

Segments of the maze that constitute a path.
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A Preliminary View of Problem-Solving Prccesses

There are any number Of ways of classifying the processes
that are used by humans to solve problems. One useful distinc—
tion differentiates processes for finding possible solutions
(generating members of P that may belong to S), from processes
for determining wﬁether a solution proposal is in fact a solution
(verifying that an element of P that has been generated does
pelong to S). This is a distinction that is often made in
the literature, in one set of terms or anotner. Johnson (4),
for example, distingulshes "production" processes from " judgmer.t"
processes in a way that corfesponds closely to the distinctlon
we have Just made (4, pp. 50-52). We prefer to call the first

class of processes solution—generating processes, and the second

class verifying processes.

Solution generators range all the way from exceedingly
"brimitive" trial-and—error searches that take up the elements
of P in a fairly arbitrary order to extensive calculations that
select an appropriate solution at the first try or to elaborate
analytic processes that construct a solution by some kind of
"working backwards" from the known propertles of solutions.

In spite of the primitive character of trial-and-error processes,
they bulk very large in highly creative problem solving; 1in

fact, at the upper end of the range of problem difficulty there
is likely to be a positive correlation between creativity and

the use of trial-and—error generators.



How Large is the Maze?

In a sufficlently small maze where a member of S, once
discovered, can be identified easlly as a solution, the task of
discovering solutions is trivial (e.g., a T-maze for a rat
with food in one branch). The difficulties in complex problem
solving arise from some combination of two factors: the size
of the set of possible solutions that must be Searched, and
the task of ldentifying whether a propocsed solution actually
satisfles the conditions of the prcblem. 1In any particular
case, elther or both of these may be the sources If problem
difficulty. By using our formal model of problem solving we
can often obtain meaningful measures of the size and difficulty
of particular problems, and measures of the effectiveness of
particular problem—-sclving processes and devices. Let us
consider some examples.

The Logic Theorist. We have made some estimates of the

slze of the space of possible solutions (proofs) for the
problems handled by the Logic Theorist. By a possible proof—
whiich we shall take as the element of the set P in this case—

we mean a sequence of symbolic logic expressions. If we impose

no limits on the length or other characteristics of such sequences,

thelr number, obviously, is infinite. Hence, we must suppose
at the outset that we are not concerned with the whole set of
pcssible proofs, but with some subset comprising, say, the
"simpler" elements of that set. We mlght restrict P, for
example, to proofs consisting of sequences of not more than

twenty logic expressions, with each expression not more than 23
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symbols in length and involving only the variables p, g, T, 8,
and t, and the connectives "or" and "implies." The number of
possible proofs meeting these restrictions is about 10235_—
one followed by 235 zeros!

The task 1s also not trivial of verifying that a particular
element of the set P, as we have Jjust defined it, is a proof of
a particular problem in logic; for 1t 1s necessary to determine
whether each expression in the sequence is an axiom or follows
from some of the expressions preceding it by the rules of
deductive inference. In addition, of course, the exprescsion
to be proved has to be contained in the seguence.

Clearly, selecting posslble proofs by sheer trial and
error and testing whether each element selected 1s actually the
desired proof is not a feasible method for proving logic theorems-—
for elther humans or machines. The set to be searched is too
large and the testing of the elements selected 1s too difficult.

e

How can we bring this task down to manageable proportions
First of all, the number we have Just ccmputed——loﬁ3 —_

un

is not only exceedingly large but also arbitrary, for it depends
entirely on the restrictions of simplicity we 1impose on P. By
strengthening these conditlons, we reduce the size of P, by
weakening them we increase 1its size. We must look for a more
meaningful way to describe the size of the set P. This we do

by considering a simple solution generator that produces members
of the set in a certain order, and asking how many members the

generator would have to produce, on the average, to obtain
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solutions to problems of a specified class. Let us generate
elements of P according to the following simple scheme (which
we call the British Museum Algorithm in honor of the primates
who are credited with employing it) (7):

(1) We consider only sequences of logic expressions that
are valid proofs — that is, whose initial expressions are axioms,
and each of whose expressions is derived from prior ones by
valid rules of inference. By generating only sequences that
are proofs (of something), we eliminate the major part of the
task of verification.

(2) We generate first those proofs that consist of a
single expression (the axioms themselves), then proofs two
expressions long, and so on, limiting the alphabet of symbols
as before. Given all the proofs of length k, we generate those
of length (k+l) by applying the rules of inference in all per-
missible ways to the former to generate new derived expressions
that can be added to the Sequences. That is, we generate a
maze (see again, Fig. 1) each cholce point (al, by, bg,_etc.)
representing a proof, and the alleys leading from the choice
point representing the legitimate ways of deriving new expres-
sions as immediate consequences of the expressions contained in
the proof. Thus, in the figure, d4 is a proof that can be
derived as an immediate consequence of c2, using path 2.

We estimate that of the sixty-odd theorems that appear in
Chapter 2 of Principia Mathematica (17) about six (all of which

are among the first ten in the chapter) would be included 1in
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the first 1,000 proofs generated by the algorithm, but that
about a hundred million more proofs would have to be generated
to obtain all the theorems in the chapter. (The actual numtcer
may be much greater; it 1s difficult to estimate with any
accuracy.) That 1s to say, 1f we used this scheme to find the
proof of a theorem selected at random from the theorems of
Chapter 2z, we would, on the average, have to generate some
fifty million possible solutions before finding the one we
wanted; and the chances of finding the proof among the first
thousand generated would be only one in ten. One hundred
million (108) is a large number, but a very small number
compared with 10235. Thus a proof has a very much higher
probability of turning up in Chaptér 2 of Principiaz if it is
relatively simple than if 1t is complicated. On the other
hand, somethlng more effective is needed than the Britisn
Museum Algorithm in order for a man or a machine to solve
problems in symbolic logic in a reasonable time.

Before leaving the Logilc Theorist, we wilsh to mention a
variant of the Whitehead and Russell (17) problems which we
have also studied, and which will be the sutject of some
analysis later. At Yale, O. K. Moore and Scarvia Anderson (5)
have studied the problem—solving behavior of subJjects who were
glven a small set (from one to four) of loglc expressions as
premises and asked to derive another expression from these,
using twelve specified rules of transformation. (For details

see the discussion in the next section and the Appendix.) 1f
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we agaln suppose derivations to be generated by working forward
from the premises, we car, in the case where there is a single
premise, make simple estimates of the number of possible
derivations of given length—and hence characterize this
particular protlem maze.

Assuming (which are oversimplifications) that each rule
of transformation operates on one premise, and that each such
rule 1s applicable to any premise, this particular maze branches
in twelve directions (one for each rule of transformation) at
each cholce point. Tnat 1ls, we start out with a single premise;
depending on which rule of transformation we apply, we obtain
one of twelve posslble new expressions from each of these, and
80 on. Thus, the number of possible sequences of length k is 12“.
If the problem expression can be derived from the premise in a
minimum of seven steps, then a trial-and—error search for the
derivation would require, on the average, the construction of
1/2x127=1.8x107=18,OOO,OOO sequences.

If only four rules of transformation were actually appli-
cable, on the average, at each stage (a more realistic assumption,
since expressions must be of particular forms for pafticular
rules to be applicable to them), the number of segquences of

length 7 would still be 4 =16,384.

Chess Playing. Let us turn now to a second example—

choosing a move in chess. On the average, a chessplayer whose
turn 1t is to move has his cholce among twenty to thirty alter—

natives. There is no difficulty, therefore, in "finding"
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possible moves, but great difficulty in determining whether a
particular legal move 1s a good move. The problem lies in the
verifier and not in the generator. However, a principal tech-
nigue for evaluating a move 1s to consider some of the opponent's
possible replies to it, one's own replies to his, and so on,
only attempting to evaluate tne resulting positions after this
maze of possible move sequences has been explored to some depth.
The maze of move sequences is tremendously large. If we consider
the numter of continuations five moves deep for each player,
assuming an average of 25 legal continuations at each stage,
14

we find that P, the set of such move sequences has about 10

(one hundred million million) members.

Opening a Safe. We can make similar estimates of the sizes

of the set P for the other examples of problem—sclving tasks we
have listed. 1In all cases the set 1t so large as to foreclose
a solution—-generating process that makes a cormpletely random
searcr through the set for posslble solutions.

Before we leave our estimates, it will be useful to consider
one additional "synthetic" example that has a simpler structure
than any we have discussed so far, and that will te helpful later
in understanding how various heuristic devices cut down the
amount of search required to find problem solutions. Consider
a safe whose lock has ten independent dials, each with numbers
running from 00 to GG on its face. The safe will have 10010:
1020, or one hundred billion billion possible settings, only

one of which will unlock it. A would-be safe-—cracker, twirling
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the dials at random, would take on the average 5C billion billion
trials to open 1it.

However, if the safe were defective, so that there was a
faint click each time any dial was turned to 1ts correct setting,
1t would take an average of only 50 trials to find the correct
setting of any one dial, or 500 trials to open the safe. The
ten successive clicks that told him when he was getting "warmer"
would make all the difference to the person opening the safe
between an impossible task and a trivial one.

Thus, if we can obtain information that tells us which
solutions to try, and in particular, 1if we can obtain information

that allows us to factor one large problem into several small

ones—and to know when we have successfully solved each of the

small ones—the search task can be tremendously reduced. This

guldance of the solutlon generator by information about the
problem and its solution, and this factorization of problems
into more or less independent subproblems lie at the heart of

effective problem—-scolving processes.

Heuristics for Problem Solving

We have seen that we can descriﬁe most problems abstractly
in terms of a maze whose paths are possible solutions, and some
small fraction of which are actual solutions. Then we can
analyse the problem—solving processes into those that determine
the order in which the paths shall be explored (solution gener-—
ators) and those that determine whether a proposed solution is in

fact a solution (solution verifiers).
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Our examples show that solution generation and verification
need not operate in an inflexible sequence. In the Logic
Theorist, as we saw, certain of the verifying conditions are
built into the generator, so that only valid proofs are generated
and other sequences of logic expressions are never considered.

On the other hand, in chess playing, to verify that a proposed
move 1s satisfactory, it is necessary to consider a large ma:ze
of possible continuations, and to search some part of this maze.

In the present section we shall examine some actual examples
of successful problem-solving programs to see Just what is
involved in solution generation and verification, and how the
programs reduce the problems to manageable size. We use tne
term heuristic to denote any principle or device that contributes
to the reduction in the average search to solution. Although
no general theory of heuristics exists yet-é/, we can say a
good deal about some of the heuristics employed in human complex
problem solving. Our data derive largely from symbolic logic
and chess, problems that are formal and symbolic. This char-
acteristic of the tasks undoubtedly limits the range of
heuristics that we have observed. H-wever, the kinds of
heuristics we have found and can describe (e.g., planning and

functional analysis) seem to have rather general applicability.

Efficient Generators

Even when the set P is large, as it usually is in complex

1/ See, however, the work of G. Polya (13,14) who has analysed
the use of heuristics in mathematics.
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problem solving, it is possible for the solution generator to
consider at an early stage those parts of P that are likely to
contain a solution, and to avold the parts that are most likely
to be barren. For example, many problems have the following
form: S, the set of solutions, consists of all elements of P
with property A, and property B, and property C. No generator
is avallable that will generate elements having all three
properties. However, generators may exist that generate elements
having any two of the properties. Thus there are three possible
schemes: (1) to generate elements with properties A and B until
one 1s found that also has C; (2) to generate elements with A
and C until one is found with property B; (3) to generate
elements with B and C until one 1s found with property A.
Which generator should be chosen depends on which constraints
are the more difficult to satlsfy, and on the relative costs of
generation. If there are lots of elements satisfylng A, then
generating elements with B and C is reasonable, since an "A"
can be expected to show up soon. If "A's" are rare, it 1is
better to generate elements that already have property A.
The Logic Theorist provides a clear example of this type
of heuristic. Recall that the problem of the Logic Theorist
is to find proofs. A proof 1s a list of loglc expressions
satisfying the following properties:
A. The beginning of the list consists of known theorems
(any number of them);

B. All other expressions on the list are direct and valid
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consequences of prior expressions on the list;

C. The last expression on the list 1s the eXpression to
be proved.

Now, although there i1s no generator that will turn out
sequences satisfylng all three of these condltlons, there are
generators that satisfy any two of them. It 1ls easy to write
down lists that start wlth Fheorems and end with the known
expression. The difficult condition, however, 1ls B: that
the list must conslst of valld inference steps. Hence, it
would be obviously foollsh to choose a generator that auto-
matically satisfied A and C, and simply wait untll it generatec
a list that also satisfled B.

It is also possible to construct a generator satisfying
A and B—one that produces lists that are proofs of something.
This generator could find a proof by producing such lists
until one appeared containlng the desired expression—conditlion
C. The British Museum Algorithm discussed earlier 1s a generator
of this kind. Finally, one can build a generator that satisfiles
conditions B and C. Filxing the last expression to be the desired
one, lists are produced that consist only of valid inference
sters leading to the last expression. Then the problem is
solved when a list 1s generated tnat satisfies condition A, so
that the expressions on the front of the 1ist are all theorems.
With this kind of generator, the list 1is constructed "bpackwards"
from the desired result toward the glven theorems. This 1s the

way the Logic Theorist actually goes about discovering proofs.
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How do we choose between these two generators — the one
that requires a search to satisfy C, or the one that requires a
search to satisfy A? In the case of loglc the answer is reason-
ably clear. There 1s only one terminal expression (the theorem
to be proved), but there are usually many known theorems. The
difference is roughly comparable to the problem of our finding
a needle in a haystack versus the problem of the needle finding
its way out of the haystack. Working backwards 1is by far the
more efflcient.

It should be clear that there is nothing inherently superior
in working backwards as opposed to working forwards. The choice
between them resolves itself inte a question of which constraints
are the most binding. It may well be, of course, that the
particular situation found here (many possible starting points
versus a single end) which predisposes towards working backwards,

is relatively common.l/

Simple Selection Heuristics

When a problem solver faces a set of alternatives, such as
the branches from a choice point in the maze in Figure 1, a
common heuristic procedure is to screen out possible paths
initially, using a relatively inexpensive test. To see the

worth of this procedure, consider a maze having m alternatives

1/ Duncker (3) calls working backwards an "organic" procedure,
and distinguishes it from the "mechanical" procedures of
working forwards. Our analysis shows both why the former
might be generally more efficient than the latter, and why
there is nothing qualitatively different between them.
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at each branch point and length k. If there were a single
correct path to the goal, finding that path by random search
would require, on the average, l/2-mk trials. If a heuristic
test were avallable that could immediately weed out half of the
alternatives at each branch point as unprofitable, then a random
search with this heuristic would require only 1/2(1/2m)k trials
on the average. This is a reduction in search by a ratlo of Ek,
which, if the maze were only seven steps in length would amount
to a factor of 128, and if the maze were ten steps in length,
a factor of just over a thousand.

The Logic Theorist uses a number of such selection heuristics.
For example, in working backwards as described above, it can
proceed in several directions from the list of logic expressions
it has already obtained. Different theorems can be used with
the various expressions already generated to make new valid
inferences. Thus, the Logic Theorist generates a maze of sub-
problems, which corresponds exactly to the abstract pictures
we have been giving (7).

In Figure 2, two mazes are shown, derived from twc attempts,
under slightly different conditions, to prove a particular theorem
from the same set of known theorems. In each maze, the deslred
theorem (*2.45) is represented by the top node; and each node
below corresponds to a new expression generated (as a subproblem)
from the node immediately above it. 1In both cases the Logilc
Theorist found the same proof, which is designated in each maze

by the heavy line. When it was generating the lower maze, the

Logic Theorist had available two selective heuristics it
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did not have during the run that generated the upper maze.
One of these heuristics weeded out new expressions that appeared
"ﬁn;rovable" on the basis of certain plausible criteria; the
otnher heuristic weeded out expressions that seemed too compli-
cated, in the sense of having too many negation signs. These
two neuristics reduced the amount of search required to find
the solution by a factor of 24/% or 2.7. When the cost of
the additional testing is taken into account, the net saving
in total problem—solving effort after allowing for this testing
was 2.2. On the other hand we have experimented witn heuristics
that were excellent 1n their performance characteristics (reduc-
ing search by factors of 10) but that required so much effort
to carry out as to cancel out the gain.

A heuristic need not be foolproof — indeed most are not.
Both heurlstics mentioned above eliminate paths that lead to
solutions. 1In rare cases they can even eliminate all paths to
solutions. To take another example, a chess heuristic that would
instantly remove from consideration anj move that left the queen
under attack would be an excellent rule of thumb for a novice
player, but would occasionally lead him to miss a winnling gqueen
sacrifice. Occasionally, heuristics are found that are fool-
proof. These are usually called algorithms. The British Museum
Algorithm is an example, for it will always generate a proof,
given enough time. ("Enough time" may, as we have seen, some—

times be centuries or millenia.)
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Fig. 2 — Mazes of two proofs of Theorem 2.45 from same initial
theorems. Identical programs generated the two mazes, except
that the program of maze b had two additional selective
heuristics. The heavy line is the proof. Dotted lines

show additional branches eliminated by selective
heuristics already in the first program.
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Strategles in Solution Generation

Usually the information needed to select promising paths
becomes avallable only as the search proceeds. Examination of
paths produces clues of the "warmer—cooler" variety that guicde
the further conduct of the search. We have already glven a
simple, but striking, example of this in the clicking safe.

As any particular dial 1s turned to the correct setting, the
person opening the safe 1is informed by the click that he should
stop manipulating that dial and go to the next. As a result he
need attempt, on the average, only 500 of the enormous totel
number of possible settings of the dials.

The sequentlal availability of cues derives from a deep
property of problem—solving tasks that we must examine closely.
There are, in general, two distinct ways tc describe any partic—
ular choice point in a problem—solving maze. In chess, for
example, a particular position can be specifled by stating
(verbally or with a diagram) what piece occuples each square
on the board. Alternatively, the position can be specified by
giving a sequence of moves that leads to it from the opening
position.

imilarly, in logic an expresslon can be specified by
'writihg it out explicitly in the usual way, or equally well by
giving a sequence of operatlons on the axioms (a2 proof) that
will produce it. (In Figure 1, the solutlon may be described
as dg or as 2-1-2.) Or, in arithmetim, if we use the symbol

X' to mean the integer that follows x, we can wrlte the
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nurber five as 5 or as QO'!'*!'!', QOr, as a more famlliar examngple,
we can designate a house by an address—5G3€ Fhillips Avenue—
or by the sequehce of turns (go two blocks, turn right, go nine
blocks, turn right, go. one block) necessary to get there from
a glven starting point.

In all these cases, we will call the first method of

specifying ar element of P specification by state description;

the second method, specification by process description. Cften

proulems are set by providing the problem solver with a particil
or conplete state description of the solution, the state descrigp-
tions of one or more starting points, and a list of allowable
processes. The task, in these terms, 1s to fincd a seguence of
processes that, operating on the 1lInitlal state, will procucs

tne final state.

We can now see how cues become avalilatle seguentially, and
why, consequently, strategies of search that use the cuecs are
poscsible. Each time a process 1s applied to an 1nitizl state,
a new state with & new description 1s produced. If there are
relations (known to cr learnable by the probler solver) between
characterlistics of the state description and distance from the
goal—Ifrom the final description that rerresents the solutior,
these relations can be used to tell when the problem solver

" hence, whether or nct he should

is getting "warmer" or "colder,
continue along a path defined by some sequence of processes.
If, for example, in Figure 1, the state description corresponding

to b2 indicates that 1t 1s closer to the sclution than the
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description corresponding to bl’ then the problem sclver at a1
wlll take path 2 instead eof path 1, and will be relieved of the
necessity of exploring the entire upper half of the maze.

Let us examine a concrete example, for whieh we have data.
Consider the following sequence of logic expressions that was
written down by a subject solving one of 0. K. Moore's problems
in our laboratory. (The reader does not need to know what the

symbols mean to understand the example. The task invelved in

these problems is described briefly in the Appendix.)

Step Expression . Justification for Step
1 R (-P>Q Given
2 R+ ( PvQ Rule 6
3 R-( QvP

Rule 1 Einside parenthesis)
4 (QvP)-R Rule 1 (outside parenthesis)
The first line is the expression given to the subject as the
starting point of the "maze."A The last line is the expression
he was instructed to produce by applying the allowable operations.
The number at the right of each line is the number of the rule
he applied to obtain that line from the previous ene. In this
example, the state description of the solution is the expression:
"(QVP)-R." The process description is: "The expression obtained
by applying rules 6, 1, 1 to expression 'R (-B>Q)'." 1t is,
of course, not at all obvieus, except by-hindsight, that these
two descriptions refer to the same logic expression—if it
were obvious, the preblem would be no problem.
How can the problem solver in this instance obtain new

information as he proceeds each step down the maze? If we compare
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the final expression with the intermediate ones, we note that
at each stage the newly derived expression resembles the final
expression more closely than did the previous ones. For
example, expresslon (1) contains two symbols that do not appear
in the final expression; these have disappeared from expression
(2). The next step rectifles the order of the symbols within
parentheses, while the final step rectifies the orcer of the
symbols in the expression as a whole.

A simple heuristic to follow in such cases is to apply an
operator 1f the result of its application is to produce a new
expression that resembles the final expression more nearly
than did the previous one. To apply the heurilstilc, the problem
solver needs some criterla of similarity, but it is easy to see
what they might be in the present case. These criteria provide
the "clicks" that reduce the amount of search required.

We can test this explanation further by comparing it with
the thinking—aloud protocol that the subject produced as he
performed the task. We produce here an excerpt from his protocol,
slightly edited to make 1t more comprehensible to the reader:

E. What are you looking at?

S. 1I'm looking at the 1dea of reversing tﬁe'R's.

Then I'd have a similar group at the beginning.

But I can easily leave something like that until
the end . . . .

Now I'm trying to see what operation I might apply
to expression (1) . . . . [He goes down the list of
operations.] Rule 4 looks interesting . . . . but
there's no switching of order. I need that P and @
changed . . . That doesn't seem practical with any

of these rules . . . I'm looking for a way, now, to
get rid of that horseshoe [D]. A . . . here it 1is,
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Rule 6. So I'd apply Rule 6 to the second part of
what we have up there.

E. That gives you [ﬁ}iting]‘(Z) R (PVQ).

S. Okay. And now I1'd use Rule 1l on P and ¢, and then
witn the entire expression.

E. we'll do them one at a time [writing] (3) R-(QvP).
Now the total expresslon?

S. Yeah.

E. You get [writing] (&) (qvP)-R, and .... that's 1it.

S. fThat's it all right. Ckay . . . that wasn't too hard.

7t will be observed that the sublect thought through the
successive changes (bringing the R to the left side, inter-
changing P and ¢, eliminating the horseshoe) in the order
opposite tc that in which he actually carried them out, but
that his process—that of making the expression at hand more
and more like the fihal expression—I1s precisely the cne. we
have described.

To give a plcture of the selectivity involved in this
particular piece of problem solving, we show in Figure 3 a
somewhat simplified plcture of a portion of the problem maze,
including only those branches that would actually be explored
if the problem were solved by a systematic search without
selectivity. Note that the path to the goal (1—2-6) discovered
through systematic search is different from the one (6-1-1)
discovered by the subject's selective processes, and that the
systematic search generated many expressions that—from the

protocol evidence—did not even enter the subject's awareness.
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The same kind of alternation between state description
and process description is involved in choosing a move in
chess. Because of the tremendous size of the maze of contin—
uvations, only a few of all the possible lines of crlay can be
examined. Wnen the player considers a particular move, he can
construct in his imagination a picture of the board after the
move nas been made. He can then examine this new state descrip-
tion to see what features of 1t are favorable, what features
unfavorable, and what likely continuations it suggests. In
this way he is gulded to examine a few paths through the maze
(if he 1s a good player, his heuristic will usually lead him
to examine the 1lmportant ones), and he can explore these to
some depth—sufficlently deeply to be able to evaluate directly
the final positions he reaches. The best evidence we possess
indicates that the strongest chess players do not examine more
than (at the very most) a few dozen continuations, and these
to depths rénging from a couple of moves to ten or even more
(see Fig. 4). The ability of the chess master, so amazing to
the novice, to explore in depth derives from his ability to
explore very selectively without misslng important alternatives.
The "clicks" he notices, inaudible to the novice, are loud and

obvious to him.

Functlonal Analysis

Underliying the heuristic of "reducing differences" is the

general concept of functional analysis. Functional or means—end
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Fig. 4 —Portion of maze of continuations examined
by chessmaster in middle game position. - -
(from de Groot [I], p. 207). The
subject was a master.
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analysis provides a generalized heuristic that can be applied
to a wide range cf problems. We will describe a program for
functional analysls that we have incorporated in a revised
versivn of the Logic Theorist, and whieh, while not completely
gereral, can almost certainly transfer without modification to
problem solving in trigcnometry, algebra, and probably other

subjects like geometry and chess.

The entities that the program recognizes are expressions,

differences between expresslons, operators, goals and subgoals,

ané methods. The program can be used as a problem—solvirg
heuristic for problems of the form: "given expression a and a
set of admissible operators, tc derive expression b." We have
already observed that logic problems ean be put in this form—
and so can most other problems formulated ir terrs of the maze
model.,

Assoclated with each goal 1n the heuristic is a set of
methods—procedures that may help attain the goal ir guestion.
A method may, in turn, involve establishing subgoals arnd apsly-—
Ing the methods asscelated with these. At some pcint, if the
heuristic 1is successful, a subgoal 1s attained by orne of its
methods; thils success reactivates the goal at the next higher
level in the hlerarchy, and so on.

Let us be more concrete. These are three types of goals
in the functional problem solver:

Type O Goal: Find a way to transform expression a into
expression b.

Type 1 Goal: Reduce the difference d between expressions
a and b.




Type 2 Goal: Apply operator g to expression &.

For functional analysis, one method is associated witn
each of these goals. Briefly, the method associated with the
type O goal conslsts in (Fig. 5A): (a) matching the tWO expres—
sions to finc 2 difference, d, between them; (b) setting up tnhe
type 1 subgoal of reducing 4—1if successful, a new trancsformed
expression, ¢ , is obtained; (¢c) setting up the type O subgoal
of transforming ¢ into Db. If the last steg i1s successfully
carrieé out, the original problem has been solved.

Tne method assoclated with the type 1 goal exmsists in
(Fig. 5B): (a) searching for an operator that 1s relevant to
the reduction of the difference, 4; and (b) setting up the
type 2 goal of applying the operator.

The me tifod associated with the type 2 goal consists in
(Fig. 5C): (a) determining 1f the conditions are met for apply—
ing q to 2; (p) if so, applying the operator, if not, setting
up the type 1 subgoal of reducing the difference between & and
the conditions for applying Q.

Let us see how this functional problem solver would approach
the particular logic problem we examined 1in the last sectlon.
The probilem solver 1s given type 0 goal of transforming expres—
sion (1) into expression (4). 1n trying to reach this goal
(Fig. SA), it first matches (1) with (4) to see what differences
there are, and notes that the symbols P and @ occur.in reverse

order in (1) from the order in (4). This generates the type 1
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subgoal (Fig. 5B) of eliminating’this difference. The problem
solver remembers (from instruction or previous description)
that operator 1 is relevant to reducing differences of this
kind, and sets up the type 2 subgoal (Fig. 5C) of applylng
rule 1 to (1). The conditions for applicability are not met,
for operator 1 requires a Vv between P and Q, while actually
there 1s a > . Hence a newvw type 1 goal is created to change
the @ into a v. Operatorv6, which has this function 1s found,
and the type 2 goal of applying it 1s set up and achieved. The
transformed expression (2), now satisfies the conditiong for
applying operator 1. This is now applied, achieving the type

o> subgoal, and ylelding expression (3). A similar, but simpler
sequence of events leads to expression (4) — at which time the
problem solver notes that it has eliminated all differences
between the initial and terminal expressions, and hence has
solved the original problemn. Reference back to the protocol
will show how closely thils program models the behavior of the

subjects.l/

I/ Our aim here 1s to jllustrate, and not to deal with the

scientific problems of how well these programs explain the
protocols. In the sketch of the program given in the text,
we generate the expressions in the order in which the sub-
Ject wrote ‘them down. The protocol indicates clearly that
he proceeded initially in the opposite order. To simplify
the exposition, we have not tried to describe the program
that would simulate the subject's behavior most closely,
and we have taken the liberty of edlting the protocols. At
another time we will undertake a more systematic analysis of
the protocols as evidence.
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It will be observed that neither the goals nor the methods
of the functional problem—solving program make reference t-
logic or any other subject matter. Simply by acquiring new
definitions of the terms "expressions," "differences," and
"operators,”" the problem solver can use the functinnal heuristic
to solve problems relating to quite different subject matter.
We hope, in the near future, to test whether this heuristic

will, for example, solve trigonometric identitles.

The Heuristics of Planning

Another class of heuristics of‘great generality that
increase the selectivity of solutlon generators are those that
come under the rubric of "planning." Consider again a maze k
steps in length with m branches at each choice point. Supp-se
that, instead of cues at each cholce point, there were a cue at
every second step to mark the correct path (see Fig. 6). Then
the task of traversing the maze successfully could be divided
intc a number of subtasks: specifically, the tasks >f reaching
successlively each of the cholce polnts that were marked by the
cues.

Such a set of subtasks would constitute a plan. In place
of the original task of traversing a maze k steps in length,
the problem solver would now have the task of traversing (k/2)
mazes each 2 steps in length. The expected number of paths that
would have to be searched to solve the first problem 1s, as

before, l/?-mk. The expected number of trials t: so>lve the
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second problem 1is 1/2k/2me.

If, as in the figure, the original maze were & steps 1in
length with two alternatlves at each cholce polnt, the averzge
amount of search required would be reduced from 32 trials to
6—to which would have to be added the effort required to find
the plan.

We use such a planning technique whenever we take a cross-—
country trip. Flrst we sketch a general route from major city
to major clty; then, taking these clties as subgoals, we solve
the subproblem of reaching each from the previous one.

We have devised a program of this kind to> describe tne
way some COf our subjects handle O. K. Moore's logic problers,
and perhaps the easlest way to show what is iInvolved in planning
is to describe that program. On a purely pragmatic basis, the
twelve operators that are admitted in this system of logic can
be put in two classes, which we shall call "essential"” and
"inessentlal™ operators, respectively. (See the Appendix.)
Essential operators are those which, when applied to an expres—
sion, make "large" changes in its appearance—change "PvP" to
"p", for example. Inessentlal operators are those which maxe
"small" changes—e.g., change "PvQ" to "QVE" As we have sald,
the distinction 1s purely pragmatic. Of the twelve operators
in thls calculus, we have classified eignt as essential and
four as inessential. Roughly speaking, the lnessential operators
are those that change the order of the symbols in expressions,
or change the connectives ("v" to ".", for example) but make

no other changes.



Cue

Fig. 6 —Problem space (above), and planning space (below)
for a simple task. The plan is used to find the cues
in the larger maze; then only the darkened
paths in the maze need be explored. The
steps marked E are essential, those
marked I, inessential—see text.



Next, we can take an expression and abstract from it
triose features that relate only to essential changes. For
exanple, we can abstrazct from "pvi" the expression (Fg), where
the order of the symbols in the latter exgression is regarded
as irrelevant (l.e., (PQ) 1s treated as identical with (&P)).
Cilearly, 1if inessential operations are applied to the abstracted
expressions, the expressions will remain unchanged, while
essentlial operations can be expected tu change them (e.g., the

operator that will change "PvP" to "P" will change (PF) to (P)).

3

Ly
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We can now set up a correspondence between our ori
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rzcted
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o

expressions and operators, on the one hand, and the ab
expressions and essential operators, on the other. corresponcing

to the original protlem of transforming a into b, we can con-

m

truct a new problem of transforming a' into b', where a' arc
b' are the evpressions obtained by abstracting a and o resrec-—
tively. Suppose that we solve the new protlex, obteaining =
seguence of expressions, a'c'd! «+oE'. We czn now transform
back to the original problem space and set upr the new problems
cf transforming a into ¢, ¢ into d, and so on. Tnus, the
solution of the problem in the planning space provides a plan
for the solution of the original problem.

Let us examine (Fig. 7) an actual example of the applice-—
tion of the planning heuristic to the 0. K. Moore protlers.
This example follows the protocol of orne of our subJects and

shows quite clearly that he used the planning heuristic in
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precisely thls way to solve the problem in question. The left-—
hand side of Figure 7 shows the sequence of expresslons the
subject wrote down 1n solving Moore's problem A4, The subject
was given the expressions in lines (1) through. (4) and told
to derive the expression in lilne (11). He carried through the
derivation in seven sterps, the prior expresslions and rules used
ir. each step being given to the right of the derived exgression.
The subject's protocol shows, however, that prior to
obtzining the rigorous derivation, he had worked out a complete
glan for the proof. The plan is shown, in terms of atstractec
expressions, in the right-hand half of the figure. The planning
activity toox place immediately after the problem was presented
to the subject, and before he instructed the experimenter to
write down any transformations of the expressions given him as
premises. Here 1s the protocol segment that discloses the
planning activity:
S. Well, one possibility right off the bat 1s when
you have Just a PvT like that [}he problem expressiod]
the last thing you might use 1s that rule 6. I can
get everything dowr to a P and Jjust add a vT. So
that's one thing to keep in mind. . . . . I don't
know if that's possible; but 1 think i1t 1s because .
see that expressions (2) and (4) are somewhat similar.
1f I can cancel out the R's, thet would leave me with
just ar S and &; and if I have Just ar S andé g, i can
eventually get-—expression (3)—get the S's to cancel
out and end up with Just 2 Q. And if I end up with
just a ¢, maybe the Q's will cancel out; soO you Se€e€
all the way down the llne. I don't know, it looke too
good to be true, but I think I see it already.
At this point the subject has already constructed & four—

step plan, whieh will lead him, as he executes 1it, to two
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PROQCF PLAN
Step Expression Justification Expression Justification
(1) Pvg Gilven PG Given
(2) -R>— " RG "
(2) S " S "
(4) > -S " RS "
(5) S> -R Rule 2 on (4)
(€) S>— Rule 12 on (2), (5) s¢ Rule 1z on (2), (&)
(7) ) Rule 11 on (3), (6) ¢ Rule 11 on (%), (%)
(8) -P>¢ Rule 6 on (1)
(s) Q> P Rule 2 on (&)
(10) P Rule 11 on (7), (<) P Rule 11 on (1), (7)
(11) PvT Rule ¢ on (10) PT Rule ¢ on (1¢)
Figure 7

Solution of Problem A4 by Subject 8



sutproblems of filling 1n the gaps (the other two subproblems
are trivial, since they are soclved simply by the tranclation of

the abstracted expressions back into the original space). One
of these subproblems 1is three steps in length, the other 1s two.
Thus, for the original seven-step maze, the subJect has substi-
tuted a four—-step maze, a three-step maze, and a two-ster mzze.
To corplete our 1llustration, let us see how the subjlect
_goes about solving the first subproblem—eliminating the F
between expressions (2) and (4):
S. Immediately following previous excerpt) Expressions
z) and (4)—we'll have to do something with them.
If 1 invert expression (4)-—apply rule 2 to it—I w2ll
hage (S>-R). Good. O0.K. Apply rule 2 to exprestion
(l* L]
E. That gives [writingl]: (5) S>-R.

S. Now apply rule 1z to expressions (2) and (4)—(2)
and (5), 1 mean.

E. That gives [writing]: (6) S£>-.

S. Right. I got rid of the R's. Now

it will be observed that only rules G, 11, and 1z are
used in the derivation of the plan. All of these are essential
rules. Fules 2 and 6, both of whicn are {inessential, are use?d
to solve the subproblems.

We can estimate how much reducti®n the planning heuristic
accomplishes irn the size of the maze t® be searched. Thos
number of alternative operations at each step is of the order
of 10 (vecause of the distinction between essential and inessen-
tial operations, it may be smaller when the planning heuristic

1s used than when the problem is solved without it, but we will
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ignore this additional source of efficiency of the planning
heuristic). 1If m is 10, then the average number of paths t»o

be searched without planning is 1/2:19 = 5,020,222. With
planning, the number of paths is 1/?'104+1/?-103+1/?-102= 5,559.
The search required in the first case is larger by a rati- »f
Go0:1.

Of course, these ratios assume that no other selective
heuristic—apart from the planning heuristic—is employed. If
the planning heuristic were superimposed, for example, 5n the
funictional analysis heuristic, the latter would reduce mto a
much smaller number, hence there would be much less search
elther with, or without planning. Suppose, for example, that
the functional analysis heuristie reduced m to 4, Then the
search without planning would involve 1/?-47= 8,162 paths; the
search with planning would require 1/?-44+l/?-43+1/2-42= 16&.
The savings ratio is now only 49:1.

The subject, understandably, was pleased with his heuristic.
His comment on solving the problem was "See, I'm acquirirg an
insight." Since his protocol gives evidence of other bits of
heuristic in addition to the ones we have been discussing, his
value of m was probably 2 or less, and the total number ~f paths
he searched was probably less than a dozen. The combination of
heuristics he used, simple though they were, secured him a
saving over blind trial and error of a factor of perhaps 5297,7090.
These rough statistics glve us a good picture of the reassn
for the "aha!" that goes with "insight" into the problem

structure (which we would translate, "acquisition of an
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additional heuristic").

Summary: The Nature of Heuristics

Irn this section we have seen that the success of a problem
solver who is confronted with a complex task rests primarily on
his abllity to select—correctly—a very small part of the total
problem—-solving maze for exploratlion. The processes that carry
out this selection we call heuristlecs. We have seer that most
heuristics depend on a strategy that modifles subseguent search
as a function of information obtained in previous search; and
we have discussed at some lehgth several of the most significant
and powerful classes of heurlistics that we have encountered in
our attempts to simulate human problem solving.

Among the heuristics we examined were: processes for
working backwards from the problem s>lution, selection heurlistics,
functional or means—end analysis, and planning. We providecd
operational meanings for these terms by sketching out what the
actual processes wouléd be in the Loglc Theorist and in a chess-
playing machine. We referred to our evidence from protocols of
human subjects that such processes actually do occur in human
problem—solving behavior. We also constructed guantitative
estimates of the reduction in search that result from the
selectivity of these heuristlics, and used the estimates to
account fcr the abllity of humans, and of machines slmulating
them by using the same processes, to solve the partigular

problems 1n questlon.
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Some Conditions of Creativity

In the reﬁaining pages of this paper we shall use thre
theory of problem solving developed in preceding sections to
cast light on three topics that are ofter discussed in relatior
to creativity:

(1) the use of imagery in problem solving;

(2) the relation of unconventionality to creativity;

(2) the role of hindsight in the discovery of new

heuristics,

These three torics were chosen because we think our theory
has something to say about them. We have not tried tc include
all the tradltional toplcs in the theory of creative activity—
we do not, for example, discuss the phenomenor of incubation—
nor will we try to treat definitively the topics we have
included. We are still far from having all the mechanisms
that will be reguired for a complete theory of creativity.
Hence, these last pages are necessarily extrapolations and

are more speculative than the earlier sectiors.

Planrning and Imazery

Among the 1issues that have surrounded the topic of imagery
in the literature on thinking the following have been prominent:

1

l. What Internal "language" is used by the organism in
thinking—to what extent is this "language" related to the
sense modalitles, and 1is the thinking represented by elements

that correspond to abstract "symbols" or to pictures, or to



something else?

2. To what extent do the interrnal representations, whatever
their nature, involve generallzatior and abstractiorn from that
wnich they represent?

Using the example of planning we have been considering,

we bellieve some clarification can te achieved of both issues.

Some Comments on kepresentation

How are the obJects of thought represented internally?
We are asking here neither a paysiological nor a2 "nardware"
question. Wwe wish an answer at the level of inforrmation
processing, rather than neurology or electronics. Irn & state
description of an Information-processing system, we can tzlk of
patterns of elementary symbols. These symbols may be electric
charges, as in some computer memories, or they may be the cell
assemblies of Hebb's theorles, or they may be something guite
different. We are not interested in what they are made of.
Glven that there are some such patterns—that the system is an
information processing system—our questior is in what way thne
patterns within mirror, or fall to mirror the patterns without
that they represent.

Let us take a simple example from logic. Wwe may write on
a plece of paper the expression "(pvg)s p." Wwhat would it nmezr
to say that the "same" expression was held in memory by the
Loglc Theorist? With the present program it would mean that

somewhere in memory there would be a branching pattern of
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elementary symbols (or the internal counterparts >f elementary

symbols) that would look like:

VAN

/N

Of course, there would not literally be mounds of ink like
"p", but there would be internal elementary patterns in one-one
correspondence to these. Note however, that the ¢correspondence
between the internal and external representations as a whoile
is far more complicated than the correspondences between
elementary symbols. The external representation »f the expres-
sion in the 1llustration is a linear array of symbols: the
internal representation has branches that make 1t top-loglically
distinct from a linear array. The external representati-n uses
symbols like "(" and ")"; these are absent from the internal
representations—the grouping relations they den-ste being
implicit in the branching structure itself (i.e., the cluster
pvg, which is enclosed in parentheses in external representati-n,
is a subtree of the entire expression in the internal represen-
tation).

The implicitness of certain aspects of the internal
representation goes even deeper than we have Jjust indicated.
For the tree structure we represented on the paper above by
connecting symbols with lines is represented within the computer
memsry by the fact that there are certain information processes
available that will "find the left subtree” and "find the

right subtree" of such a tree structure. The actual physlical
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locations of these elements in memory can be (and usually are)
completely scattered, 85 long as these information processes
have means for finding them.

Let us take another example. If we wish t: represent »Hn
paper the concept of a palr of elements, P and Q, abstracted
from the order of the palr, we can write something like: (PG},
and append 1t to the statement that (PQ) 18 equivalent for all
purposes with (QP). In an internal representatlor, order-inde-
pendence of the terms of the palr might be secured In a quite
different way. Suppose that the symbols P and Q were st-red
(in some order) on a list in memory, but that the only informa-
tion processes avallable for dealing with lists were processes
that produced the same output regardless of the order of the
items on the list. Suppose, for example, that the "print 1list”
process always alphabetized the list before printing. Then
this process would always print out "(P§!" regardless »f
whether the items were stored on the 1list as Pg or QP. 1In
thls case, the order—independence cf the Informatisn processes
applicable to the 1lists would be an implicit internal represer -
tation of the equivalence sf (PQ) with (QP).l/

The malr lesson that we learn frcm these examples 1s that

the internal representation may mirror all the relevant properties

L/ A simple example of this in humans 1s well known t- teachers
of matrix algebra. Since all the elementary arithmetic and
algebraic systems that students have encountered previously
contain the commutative law, students must be taught that the
matrix product AB is not equivalent to the product BA.
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of the external representation without being a "picture" »f it
in any simple or straightforward sense. It is not at all clear
whether a human subject would be aware that his internal repre—
sentation of a logic expression "carried" the information abou
the expression in quite a different way from the string of
symbols on paper, or that, if he were aware, he could verbalize
what the differences were.

A similar point has been made in discussions of "enc-ding.”
Our examples show, however, that encoding may invalve s mething
far more complex than translating a string of symbols in -~ne
alphabet into another string of symbols in ansther alphabet.
The encoded representation may not be a string at all, and
there may be important differences in what is explicit and

what implicit in the two representations.

Representation and the Sense Modalities.

Since the internal representation of informatisn need rot
be a2 simple mapping of what is "out there," or even ->f what is
received by the sense organs, it is not easy to know what 1is
meant by saying that a particular internal representation is
or is not "visual" or "auditory." Is the internal branching
structure that represents the logic expression inside the
Logic Theorist a visual image of the string of symbals -n paper
or 1s it not?

There 1s an obvious fallacy in saying that it is n>t Just

because the spatial (or even the topological) relations are not



tne same In the two. The internal representations we ca ry
around in our heads of even the most visual of pictures carrnot
possibly have the same metrical relations within (and posslbily
a0t even the same topologic relations) as without.

We belleve that the explanation of why scme memories are

s
)]

visual, some auditory, and some verbal lies in guite different

direction from a simple "mapping" theory. Since our explanation
rests on considerations that have not ever. been touched upor

in the present parer, we cannot discuss it at lengtn. Hcwever,
a very briefl statement of it may help us understand the roie

of imzgery in creative tnought.

We will assert that an internal representation is visuzl

if 1t is capable of serving as an input to the sare information
rocesses as tnose that operate on the internal representations
of immedlate visual semscory experiences. These informatior
processes that can be applied to visual sensations literally

serve as a "mind's eye," for they can operate on memories that

wave been encoded in the same way as sensory inputs, and whern
they are so applied produce the phenomera of visual imaginaticn.
Since there must be processes that can deal witn sensory inputs,
there 1s nothing mysterious in the ncticn that these sam
processes can deal wlth inputs from memory, and hence notning
metapnysical or non—operational about the concept of "mind's
eye" or "mind's ear."

But the mind's eye is used not only to process inputs thzat

"nature" coded in visual form. Often we deliberately construct
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visual representations of abstract relations (e.g., we draw
boxes to represent states of a system, and arrows ccnnelting
the boxes to represent tne processes that transform one state
into anotner). What car be the advantage of the imeagery? The
advantage lies in the fact that when we encode information so
as to be accessitle to visual procescses, we have automatically
built into the encoded information all the relations that are

meliclit in the information processes that constitute the

[ors
O

mind's eye. For example, when we represent somethiing ac an
arrow, we determine the order in whicn the items cornected Dby
the arrow will be called into attention.

We are led in thils way to the concept of systems of
imagery. A system of imagery comprises a set of conventions

for encoding information, and coordinated with triese a set of

ct

information processes that aprly to the encoded inforratior.
As we have seen, tre information procescses for interpreting

the encoded informaticn may be just as rieh in implicit conver—

0n

tions as the processes for encoding. 1t is the fact that the
encoding makes available the former as well as the latter thnat
makes 1t useful scmetimes to reprecert information In a modal ity

for wnicn we have a rich and elabcorate system of Imager,.

Abstraction and Gererallizatlior.

Bishop Berkeley founded his epistemology on the perscnal
difficulty he experienced in imagining a triangle wniah 1s

"neither oblique nor rectangle, eguilateral, equigrural nor



scalenon, but all and none of these at once." Hume, on the
otrer nand, found this feat of imagination perfectly feacsivle!
Trne Logic Theorisﬁ would have to taxe Hume's slide agzinst
Berxeley. For in the planning program the protler solver héas
the capacity to imagine a loglc expression comprised of two
varizbles Jjoined by a conrective, in which the conrnective is
reither v ancr » nor o, but a2ll and none of tnece at once.
For tnils is precisely what the repressntation (7q) starde for

1

nning gro

m
Q
M
tn
"

]
tn

aré the way in which it is used by the

s

Cnce we ad—it that the relation between tne object sensged
zr4d i1ts internzl represertation i1s complex, tnere is ro cifficc
in acdmitting as corcllary that the internzl representation may
abstract fror all but a few of the propertiec of the ot ject
"out there." What we cz11 "visual imagery", for example, wa
admit of colorless images ever 1f all lignt tnat falls orn the
retina 1lec colorec.

The fact trat the planning heuristic of the Logic Tneorlst
rossesses generalized or abstracted images of 1l:zic exiress’lore
doez not prove, of course, thnet humanc co struct sivilar
abstractions. wnat it does prove is that tne notlon of ar
mezgz of a triangle "neither obligue nor rettangle, cullateral

egulcrural, nor scalencn, but all and rnone of these at cnce' is

1

b

not ccntradictory, but can te given a stratghtforward operational

definitior ir an infirmation-processing syster. T[inally, since
the “nformatior. processes that can operate on the abstracted

expressions in the Logic Theorist are of the same kind as thoce

T4 -
-

J
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that operate on the full-bodled expressions, we wouléc be forced,

4

sonable criterion, t5 regard the two images as belorg-

o

by any re

irg to the same modality.
1o Uses of Imagery.

We have zalready hinted at the uses of imagery, but we would
like now to consider them a little more explicitly. To think
atout something, that something must have ar internal represen-—
tation of some kind, and the thinking organism must have some
processes thzt are capable of manipulating the representation.

we nave called such a comblnation of representaticn and procecses

Oftern, the term image 1is used somewhat more narrowly to
refer to tnose representations that correspond to one or anotner
of the sense modalities. Thus, we have visuzl images, auditory
images, and tactile images, but we would not, in tnis narrower
uszge, speak of "abstract imazes"—i.e., representations znd

processes not uced for representations of any of the sercsory

Wwnen a particular representation is used for something, a
large nurmber of properties are imputed implicitly to the object
represented because these properties are imbedded in the informa-—
tior processes that operate on representations of the kind in
question. Thus, 1f we represent something as 2 line, we are
likely—because that is the way our visual imagery operates—

to iwpute to it the property of continuity.



Herein lies both the power and the danger of imagery as a
tool of thought. The richer the properties of the system of
imagery we emrloy, the more useful is the imagery in manipu-
lating the representation, but the more darger there is that
we wlll draw cornclusions based on Properties of the system of
imagery that the object represented doesr't possess. When we
are aware of the danger—and are conscious that we have encoded
information intc a system of imagery with strong properties—
we are likely to call the image a "metaphor."

Often we are not aware of the danger. As has often beer
observed, Aristotle's logic and eplstemology sometimes mistocx
accldents of Greex grammar for necessary truths. Fro~ this
standpoint, the significance of modern mathematics, with its
emphasis on rigor and the abstract axiomatie method, i1s that It
prrovides us with tests that we ecan arply to the procducts of
thinking to make sure that only those assumptions are being
used that we are aware of.

The imagery used in the planning heuristic drastically
reduces the space searched by the sclution generator by abstrzct-
ing from detail. This is protably nct the only function of
imagery for humans, although it is the one best cdocumented by
our present programs. We think there is evidence frorm datz on
human subjects that ever ir those cases where thers iz not a
rich set of processes associated w*th the rerresentation, imagery
may provide a plan to the problem solver at least in the sense

of a list of the elements he is dealing with and a list of which



P-1320
9-16-58
-60-

of these is related. We will have tc leave detailed diliscucscion

of this possibility to another oceasion.

Summary: Imagery

We have applied our problem—solving theory to the classiczl
problem of the role of imagery in thought. Although our analysis
of imagery is admittedly speculative, 1t provides a possible
explanation of the relation of internzl rerresentations to the
serise modalities, anéd provides ar example from one of the comguter
programs of generalization or abstraction, ancd of an abstract
"visual" image. Finally, the theory shows now images of various

kindes can be used as the basis for planning heuristics.

Unconventionality and Creativity

Thus far, our view of the problem—solving process has been
a short-range one. We have taken as starting point a systewm of
heuristics possessed by the problem solver, and have asked how
t would gover:: his behavior. Since his initlal systemn of
neuristics may not enable the protlem solver to find a solutlion
in a particular case, we must also understand how a system of
neuristics is modified and developed oOver time when It is not

adegquate 1Initially.

Change of Set and Learning

Although all adaptive change in heuristics might be termed

1.

learning,”

it is convenient to distinguish relatively short-run

and temporary changes from longer—-run more or less permanent
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changes. If we use "learning" to refer only to the latter,

"ehanges in set.”

then we may designate the former as
There is & basis for tioe distinctiorn between set charge
ard learning in the structure of the problem—solving organism.
Tne numan problem solver (and the machine simulation) 1is
essentially a serial rather than a parallel instrumert, wnich
beczuse of the narrow span of its attention, does only one or
a few things at a time. 1If 1t has a rich and elavorate systiew
of neuristics relevant to & particular probler, only a small
part of these can be active in guiding search at any giver.
moment. Wnen in solving a problem ore subsystem of neuristlics
is replaced by anotner, ard the search, as a conseguence, T.0OVES
off in a new direction, we refer to this shift as & change in
set. Change in set 1s a modification of the heuristics that
are actively gulding search, by replacing them with other
neuristics in the problem—solver's repertoire; lezrning -s

change 1n the repertoire of neuristics 1liself.

Stereotypy

A major function of heuristics is tc reduce the size of
the problem space so that {1t car. be searched ir reasonavle time.
Effective heuristics exclude those portions of the space where
g-lutions don't exist or are rare, and retain those portions
where solutions are relatively common. Heuristics that have
beer acquired by experlence with some set of problems may te

exceedingly effective for problems of that class, but may
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prove lnappropriate when used to attack rew problems. Behnavior-—

ally, stereotypy is si mply the subJect's persistence in using

a8 system of heuristics that the experirenter knows is inappro—

priate under the circumstances.

It is a very commzn characteristic of puzzles that the
first steps toward solution require the solver to do something
that offends common sense, experience, or ghysical intuition.
Solutions to chess-mating problems typically begzin witn "sur-
prising” moves. In the same way, a nurber of class:cal exper—
iments with children and animals show that a simgle protlem of
locomotion to a goal carn be made more difficult if a carrier
forces the subject to take his first Steps away fror the goal
ir order ultimately to reach it. When the tasx has tnle char-
acteristic, the protlem solver is otviously more lixely tc
succeed iIf nls repertoire of heuristics includes the it;:nctibn:

"If at first you don't succeed, try something counterintultive."

ls Unconventionality Enoush?
i85 J e

It sometimes seems to be argued that people would become
effective problen solvers if ornly we could teach tner to be
unconventional. If our analysis here is correct, urconvertion-
ality may be a necessary condi ition for ecreativity, bust it is
certainly not a sufficient condition. If unconventlionality
simply means rejecting some of the heuristies that restrict
search to a limited subspace, then the effect of unconvertion—

ality will zenerally be a return to relatively ineff.cient
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trial-and—error search in a very much larger space. We have
given enough estimates of the sizes of the spaces Iinvolved,
with and without particular heuristics, to cacst susgicion on
a theory of creativity that rlaces 1ts emphasis on Iincrease
in trial and error.

Let us state the matter more formally. Associated witn
a problem is a space of possible solutions. Since tne protlem
solver operates basically in a serial fashion, these solutions
must be taken up and examined in some order. I1f the probtlem
solver has no information about the distribution of solutlions
in the space of possibllitlies, and no way of extracting cluec
from his search, then he must resort to a soclutior gererator
that is, to all intents and purposes, "random"—that leads
him to solutions no more rapldly than would a chance selection.
At some later stage the problem solver learns now to cnarge
the solution generator so that—at least for some range of

problems—the average search reguired to find a solutlion is

n

greatly reducec. But 1f the modifled generator caucses som

m

T,

elements 1n the solution space to be exanined eariler tnan
they would otherwise nave been, it follows tnat tne examinatiow.
of others will be postponed.

The argument for unconventionality 1s that at some pcint
a class of problems may be faced where the generator looxc at
Just the wrong elements first, or ever. carefully filters out
the right ones so that they will never be noticed (as in the

chess example of queen sacrifices). A returr to tne original
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trial-and-error generator would eliminate this perverse blind-
ness of the generator, but at the expense of reinstating a
search through an enormous space. Wwhat 1s needed in these
cases 1s not an elimination of the selective power of a solution
generator, but the replacement of the inappropriate generator
by an appropriate one.

We have nelither the data nor the space to illustrate this
point from classical instances of sclentiflc creativity, but we
car give a simple example from chess. A chess novice 1is always
stunned when hils opponent demolishes him with a "creative"
unconventional move like a sacrifice of a maJjor piece. The
novice has carefully trained himself to reject out of hand
moves that lose pleces (and kicks himself for his oversights).
If he tries to imitate his more experienced opponent, he
usually loses the sacrificed piece. Clearly the opponenrt's
secret is not simply that he is willing to be unconventional—
to consider paths the novice rejects. The secret 1s that the
experienced player has various additional pieces of heuristic
that guide him to promising "unconventional" moves by giving
him clues of their deeper and more devious consequences. It
is the possession of this additional selectivity that allows
him, in appropriate positions, to give up the selectivity
embodied in the novice's rule of always preserving major pleces.
The evidence we possess on the point indicates rather strongly
that the amount of exploration undertaken by the chess master

is no greater thar that undertaken by relatively weak players (1).
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He does not generate more sslution possibilities; he d-es

generate them 1in a different sequence.

Nature Abhors a Vacuum

We see that set change in particular, and unconventionality
in general, are likely to facilitate the solution of a problem
only if the problem solver has an appropriate new heuristic
to replace the inappropriate heuristic that has been "blinding"
him. Accordingly, to understand the success of effective and
creative problem solvers we must examine not only the motiva-
tional and attitudinal factors that enable them to change an
initial set or to vioclate accepted conventions; we must pay
equal attention to the richness of their systems of heuristics
that makes any particular piece of heuristic dlspensable, and
to their learning processes that generate new heuristics to
£f111 the vacuums created by the rejection of the ones previously

used.
Learning by Hindsight

Our experience with the simulation of learning has been
much more limited than our experience with the simulation of
problem solving. The chess—playing program is, to date,
entirely a performance program; and only a few experiments
have been carried out with learning heuristics for the lLogic
Theorist. Nevertheless, from these explorations and from our.

theoretical model we can draw some implications about learning
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processes that help us understand how the creative problem
sclver carn gradually improve his heuristics.
N the next two sections we will describe two kinds of

learninz tnat have actually been tested with the Logie Theorist.

o

Sth kinds of learning involve "hindsight," and in the third
section, we shall undertake a more gereral analysis of thre

rolie of hindsight in the acquisition of new heuristics.

Memory ¢f Specific Results

The simplest kind of learning in a meze is to remember
the path to a solution so that the same solution can be reacres

&t once in a later trial. There is no difficulty in programmin

8]

& machine for this kind of learning, provided thzt its mercry

[y
{n
-

arge enough; and little enough difficulty for a humar.

+]

rus 1t is probazble that most hlgh school geometry students,

6]

unless they have an enlightened teacher, focus their energies
O0n memcrizing theorems and their proofs.

The Logic Theorist stores in memory the theorems it has
proved (it could also remember thne proofs themselves, but at
present 1s not programmed to do s0), and hence can use thece
as starting pcints in exploring new parts of the maze.

Cne should not underestimate the enhancement of protler-
solving power that can be obtzined even with this "routine" king
of learning, particularly if the teacher is careful tc present
tasks to the problem solver in an appropriate order. We have
already seen how much the search for a long proof can be reduced

if 2 plan 1s provided first; but a plan consists slmply in
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dividing the original problem into a serles of smaller problems—
marking the path the problem solver is to follow.‘ Exactly the
same effect can be secured if the subproblems generated by the
planning heurlistic are 1lnstead provided by the teacher.

On the other hand, storage of specific informa¢ion about
paths in the maze is not always helpful 1n subsequent problem
solving. We have conducted some experiments with the Logic
Theorist in which a theorem is presented for proof (a) after
all previocus theorems have been stored in memory, and alterna-—
tively (b) after a carefully selected small set of "powerful"
theorems has been stored 1in memory. 1In a considgrable number
of cases, the program proves the theorem more guickly, and
with far less search, in the second condition than in the first.
For example, in one case (Theorem *2.48 of Principia) (17) the
Theorist achieved a three—-step proof when it had in memory
only the axioms and one prior theorem (*2.16) in one—-third
the time it took to find a two—step proof when it held in
memery all prior theorems. We are reminded by this example of
the blinding effects of excesses of pedantry on human problem
solvers also. A small arsenal of good general-purpose weapons
may be much more effective than a storehouse of specific,
narrowly useful ones.

A graphical impression éf the qualitative difference that
is produced in the Logic Theorist's problem-solving behavior
when different numbers of prior theorems are held in memory

can be obtained from Figure 8. The upper half of the figure
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(a)— Subproblem maze of *¥2.17
with twenty axioms and

theorems in memory

(b)— Subproblem maze of *2.17
with ten axioms and
theorems in memory

Fig. 8
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shows the maze of subproblems the Theorist explored while
proving Theorem *2.17 with all axioms and prior theorems
(twenty in all) held in memory; the lower half shows the
maze explored while proving Theorem *2.17 with only the axioms
and five theorems (ten in all) held in memory. 1In the former

case, 23 branches had to be explored to find a three-step proof;

in the latter case only 1l branches to find the same proof.

Differentiation: Specialized Methods

As the problem solver accumulates a larger and larger
store of results and techniques, his problem of selection be-
comes more difficult unless he acquires at the same time
additional clues on the basis of which to differentiate parts
of the problem space in order to use special techniques under
speclal circumstances. We have developed one example in the
Logic Theorlist of a process for learning specialized techniques.
The Loglc Theorist uses four baslc methods of attack on problems.
In each method it employs theorems already proved as its "raw
materials.” It turns out, empirically, that some theorems are
used principally in connection with certain methods, other
theorems with other methods. The Loglc Theorist, when it has
used a particular theorem 1in connection with a particular method
to solve a problem, assoclates the theorem with that method.
The next time 1t has occasion to use the same method, it tries
theorems that have had a history of success with that method

before 1t trles the other theorems.
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To study the effects of introducing this learning of
associations between particular methods and particular theorems,
we performed the following experiment. As a pre-test, we

instructed the Logic Theorist to attempt 1in sequence the first

52 theorems in Chapter 2 of Principia Mathematica (17), allowing

it, when attempting a particular theorem, to use all prior
theorems (whether it had succeeded in proving them or not),
but not to use the special methods learning program. Then, we
erased the results of this experience from memory, and as a
test of the learning, instructed the Theorist to attempt the
same 52 theorems, this time using the special methods learning
program. The main result of the experiment can be seen by
comparing the times required by the ﬁrogram to obtaln proofs
for the twenty theorems that were proved in both pre-test and
test and whose proofs were not trivial. (We disregard 18
additional theorems proved on both runs, but having trivial,
one—step proofs.)

The abscissa of each point in Flgure $ shows the time
required to prove a theorem in the pre-test; the ordinate of
that point, the time to prove the same theorem in the test run.
The remarkable fact about this scatter diagram 1s that 1t
consists of two straight lines, each containing about half
of the points. For the points on the upper line, almost twice
as long was required to discover a proof on the test run as on
the pre-~test; for the points on the lower line, less than half

as long was required on the test as on thc pre-test.
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Closer examinatisn of the machine's protnsec-ls provides a
simple explanation. 1In the test run, the pr:>gram tried its
special high-priority theorems first. Only when these falled—
l.e., when the problem was of a new "type" that did n-t yield
to any methods that had w:rked on previsus problems—did the
program fall back on its full store 5f available the-rems.

The additional time required in the test run for these pr-blems

was the time spent in the futile attempt t> use the special

theorem lists it had learned. On the >ther hand, where a pr-blem
yilelded to proof by a meth-d that had worked on a previsus problem,
this was soon disccvered in the test run with a corresponding

large improvement in performance. Comparis->n of the mazes f r
pretest and test runs of the latter group of problems reveals

the characteristic difference—quite similar t-> that in Figure
2—Dbetween shallow widely-branching trees invslving much search

in the former case, and deep, sparsely-branching trees in the

latter.

The Contributisn of Hindsight to Heuristics’

The learning programs we have mentisned have tw- important
characteristics in c-mmon: (1) they consist in a gradual accumu-
lation of selective principles that modify the Sequence in
which possible solutisns will be examined in the pr-blem space:
(2) the selective principles are ~btailned by hindsight--by
analysis of the program's successes in its previnus problem—

solving efforts. We believe that both of these characteristics
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are to be found in most of the important learning processes
in humans. Since we have already discussed the first at length,
we will turn next to some comments on the second.

Creative problem solving is mysterious because it is hard
to see how needles are found in haystacks wlthout interminable
search. We have tried to dispel the mystery of the performance
by exhibiting devices that are capable of narrowlng search to
a very small part of the haystack. In one sense, however, this
only pushes the mystery back. We can now regard the task of
learning an effective problem—solving heuristic as itself a
problem—solving task. The space of possible heuristics for
problem solving is a space that must be enormous, even as
problem spaces go. How do we find solutions in that space?

How do we learn effective heuristics?

| We must be careful not to overexplain the phenomenon by
discovering learning mechanisms far more powerful than would
be needed to account for the historical facts of sclentific
discovery. One of the key heuristics that underlies physical
intuition in dynamics 1is the notion that forces produce changes
in velocity (rather than producing velocities). Evidence from
which this idea might be derived is available to anyone with
eyes. Yet at least hundreds of man-years of search by highly
intelligent men were required tc discover the ldea, and even
after it was enunciated by Galileo, another century of work
was required before even the most intelligent scientists had

cleared it of all obscurity and confusion. Wc have an even
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better-documented case in chess, where the game had a large
literature and numbers of professional players for two centuries
or more before Steinitz discovered some of the principles »f
positional play. From these and other examples we might
conclude that the spaces that have to be searched to find
important new heuristics are indeed large, and that the
heuristics available for searching them are not generally very
effectlive.

With this caution we can return to the questisn of how
learning takes place—granted that it doesn't take place very
often or very fast. Let us 3uppose that the Logic Theorist
solves a difficult problem, and that it retains for a time in
memory not only the correct path (the prsof) that it finally
discovered but alsoc a record of the other paths it tried. Jne
could then program it to re—examine various of the choice p-ints
at which 1t had not selected the correct branch on the first
trial to look for relations between the state descriptisn at
that point and characteristics of the correct branch. It
could also be programmed to examine expressi-ns Jjust bey-oné
the choice point along correct and inecorrect pathe 1in »>rder t>
determine whether there were conslistent differences between
the expressions along the correct paths and those al-ng the
incorrect. Whatever differentia were discovered by such a
program between correct and incorrect paths could be incorporated
in the path generator. With the use of such procedures, a single
successful experience of solving a problem after much trisl—

and-error search could become the basis for a great deal of
learning.
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More formally, suppose we wish to search a space of
possible clues to determine which of these clues should be
incorporated in a solution generator for maze paths. 1In terms
of our general problem-solving theory we need a clue generator
and a clue verifier. Hindsight contributes nothing to the
construction of the clue generator, but it provides a cheap
and effective verifier, since any possible clue we generate
can be tested at once against a considerable number of instances.

We wish to offer a final comment on the "hindsight" aspects
of learning. Suppose that, in terms of avallable computing
power, the problem-solving organism can afford to explore
only a few hundred paths in searching any particular prcblem
space. Then an effective strategy for dealing with a large
élass of problems would be to abandon problems that did not
yield solutions after moderate effort had been applied, to do
learning by hindsight on the easier problems that proved
solvable, and thus gradually to add to the number of problems
that could be handled successfully.

Assume that we have a class of problems with an initial
value of m=10. Then, if the problem-solver had a limit of
500 paths per problem, he would only be able to solve problems
of length k=2 or less. As learning proceeded, however, the
new heuristic would reduce the effective value of m. By the
time that m had been reduced to 6, problems of length 3 cculd

be solved; when m reached 2, problems of length & could be
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solved; and reductions of m below an average level of 2 would

increase very rapidly the lengths of the problems that ecduld

be handled.

Concludling Remarks

In this paper we have treated creative activity as problem—
solving activity characterized by the novelty and difficulty
of the task. We have proposed an explanation for creative
problem solving, developing this explanation along three
parallel lines: (a) by constructing an abstract model of
problem—solving behavior that provides operational meaning to
such concepts as "problem difficulty” and "power of a heuristic";
(b) by specifying programs for digital computers that simulate
human problem-solving behavior, and using the abstract model
to understand the effectiveness of the programs for solving
problems; and (c) by re-examining some of the classical problems
in the literature of problem solving and creativity to see
what light the theoretical model, the computer programs, and
data on human behavior cast on them.

The main results of our investigations up to the present
time are embodied in a number of computer programs, some of
_ which have actually been run on a machine, some of which are
coded but have not been run, and some of which are specified
at the level of flow diagrams. The programs that we have referred
to specifically here include: (a) the original program of the
Logic Theorist, adapted to proving theorems in Whitehead and

Russell's Principia (17), (b) a learning program that modifies
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this basic program, permitting the Logic Theorist to learn to
use special methods for.special classes of problems, (c) a
revision of the Logic Theorist that adapts it to solving logic
problems in the form used by O. K. Moore in his experiments with
human subjects and that incorporates a program for functional
means-end analysis, (d) a supplement to this last program that
gives 1t the capacity to construct plans, (e) a program for a
chess-playing machine. A number of other programs that are in
process of construction by members of the RAND-Carneglie group
and by others were not specifically mentioned here, but have
provided some of the background for our theorizing.

Data obtained by comparing in detall the operation of
these programs with the behavior of human subjects is limited.
We have now accumulated human protocols that will permit such
comparison for both the logic and chess programs, but our main
tests of the theory have thus far been of a grosser sort. We
would chiefly rely on the fact that we have specified programs
enabling mechanisms to solve complex problems 8O large that
they would not yield to a brute -force approach, using even the
most powerful computers. The success of these programs in
obtaining problem solutions 1s the primary evidence for the
theory of the problem-solving process that underlies their
design.

We should like to stress our specific findings less than
the methodology we have described for understanding the human

mind. The use of computer programs to simulate information
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processes allows us to study the behavior of systems of great
complexity—far greater complexity than ean be handled reliably
with either verbal or classical mathematical techniques. We
have constructed a theory of human thinking in terms of its
underlying information processes, and we have indicated how

the theory can give precision to topics that, however important,
have 1in the past been discussed in exceedingly vague terms.

We have, for example, identified in the program of the Logic
Theorist notions like "grasp of problem structure," "visual
image," "abstraction," and "set."

Some of the programs we have described perform work that
1s considered difficult, and even mildly creative, when it is
done by humans. Although these programs fall considerabiy
short 1in performance of the highest levels of creativity of
which humans are capable, there is every reason to suppose
that they are Qualitatively of the same genus as these more
complex human problem—solving processes. In another place,
we have predicted that within ten years a computer will dis—
cover and prove an important mathematical theorem, and compose
music that is regarded as aesthetlcally significant. On}the
basis of our experience with the heuristics of logic and chess,
we are willing to add the further prediction that only moderate
extrapolation is required from the capacities of praograms
already in existence to achieve the additional problom—solving

power needed for such simulation.
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APPENDIX

It may be helpful to the reader, in following the speciflc
.examples in the text, to have a brief description of the
problem—solving task involving logic expressions that was
‘designed by O. K. Moore and Scarvia B. Anderson.

A logic expression is a sequence of symbols of two types:
(1) variables—P, Q, R, etc.—and (2) connectives—not (-), and
() or (v), and implies (>). An example from the text is
R- (-P>Q), which may be interpreted as "R and (not-P implies
Q)." The subjects are not provided with this interpretation,
however, but are told that the expressions are c>de messages
and that the connectives are named "tilde" (-), "dot" (.),
"wedge" (v), and "horseshoe" ().

The following rules are provided for transforming one or
two given logic expressions into a new expression (recoding
expressions). We will state them here only approximately,

omitting certain necessary qualifications.

One-Line Rules

1. AvVB &= BvA 5. AVB &3 — (-A--B)

A-B &4 B-A A‘B &» — (-AV-B)
2. A>B & -Bo-A 6. AD B &3 -AVB

AVE e _A>S B

I, AVA @ A 7. AV§B'C) - EAVB)-EAVC)

A-A é=» A A*(BvC) e (A-B)v(A-C)
Yy, Av?BvC) o éAvB)vC 8. A-B = A

A-(B-C) e» (A-B)-C A‘B = B

9. A = AvX, where X 1s any expressinn
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The rules can be applled to complete expressions, or (except
rule 8) to subexpressions. Double tildes cancel, 1l.e., --A&3A

but this cancellation is not stated in a separate rule.

Two-Line Rules

12. If A and B are glven, they can be recoded int- A-B.

11. If A and A—>B are given, they can be rec-ded into B.

12. If A>B and B>C are given, they can be recoded int»>

A>C.

Subjects were instructed in the use of these rules, then
were given problems like those described In the text. They
were asked to think aloud while working on the problems, and
each time they applled a rule to recode one or two given expres—
sions, the new expression was written on the blackboard by the
experimenter, together with the numbers of the expressions and
rule used to obtain 1t.

By inspection of the rules it can be seen that in the plan-
ning space, where connectives and the order of the symbosls are
disregarded, rules 1, 2, 5 and 6 would leave expressions
unchanged. These are the inessential rules; the others, in
altered form, become the essential rules. Rule 8, for example,

becomes simply: AB=sA.
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