/{””

A COMPLEX INFORMATION PROCESSING SYSTEM

THE LOGIC THEORY MACHINE

by
Allen Newell and Herbert A.
P-868

June 15, 1956

Simon

v\\\

(64)

7% RAND 2o

1700 MAIN ST, « SANTA MONICA -

CALIFORNIA

Sy et

P68

i
- -

11

The Logic Theory Machine

In the language we have constructed, we have variables

(atomic sentences): p, 4, T, A, B, C, +». and connectives: - (not),

v (or), » (implies). The connectives are used to combine the

variables into expressions (molecular sentences). We have

already considered one example of an expression:
1.7 -p 9. Q V =P

The task set for LT will be to prove that certain expressions
are theorems — that is, that they can be derived by application
of specified rules of inference from a set of primitive sentences
or axioms.

The two connectives, - and v, are taken as primitives. The
third connective, » , 1is defined in terms of the other two, thus:
1.01 P+ Q™ 4er -P VA

The five axioms that are postulated to be true are:

l.2 PV P.».P

1.3 p.~>aqaV P

l.4 pvag-sqVep

1.5 pv.qVIr:+:q .V.pVTr

1.6 p» qar vp- TrVvgq

Each of these axioms is stored as a 1ist in the theorem
memory I, with all its variables marked free, F, in their
respective elements.

From the axioms other true expressions can be derived as

theorems. In the system of Principia Mathematica, there are

two rules of inference by means of whieh new theorems can be

P-86#8
b

derived from true -expressions (theorems and axioms). These
are:

Rule of Substitution: If A(p) is any true expression con-

taining the variable p, and B any expression, then A(B) is
also a true expression.

Rule of Detachment: If A is any true expression, and the

expression A 4 B is also true, then B is a true expression.

To these two rules of inference is added the rule of replace-

ment, which states that an expression may be replaced by its
definition. In the present context, the only definition is
1.01, hence the rule of replacement permits any occurrence of
(-pvq) in an expression to be replaced with (p+q), and any
occurrence of (p+4q) to be replaced with (-pvq).9
In this system, then, a proof 1s a sequence of expressions,
the first of which are accepted as axioms or as theorems, and
each of the remainder of which is obtained from one or two of
the preceding by the operations of substitution, detachment,
or replacement,
Example; prove 2,01, p 9 -p .9 =-p:
(1) tpvp .2 p (axiom 1.2)10
(2) t-p v-p .9 -p (by substitution of -p for p)

(3) t p9-p 4 -p (by replacement on left)

e

9As we shall see, 1.0l is not held in storage memory, but is
represented, instead, by two routines for actually performing
the replacements.

The exclamation point in front of an expression indicates that
the expression in question is asserted to be true. To designate
an expression whose truth has not been demonstrated, we will use
a question mark preceding the expression.

PaH8

-yl T .

The problem now is to specify a program for LT such that,
when a problem is proposed in the form of a theorem to be
proved (like 2.0l above), a proof will be discovered and con-
structed. First, it should be observed that there is a systematic
algorithm for constructing such a proof, should one exist.
Starting with the five axioms, we construct all the theorems
that can be obtained from them by a single application of the

11 We thus

rules of substitution, detachment, or replacement.
obtain the set of all theorems that can be obtained from the
axioms by proofs not more than one step in length. Repeating
this process with the enlarged set of theorems, we obtain the
set of all theorems that can be derived from the axioms by
proofs not more than two steps in length. Continuing, we
finally obtain the set of theorems that can be derived by proofs
not more than n steps in length.

Now, if the theorem in which we are interested possesses a
proof k steps in length, we can, in principle, discover it by
constructing all valid proof chains of length not more than k,
and selecting any one of these that terminates in the theorem
in question. This "in principle™ possibility is,in fact, com-
putationally infeasible because of the very large number of
valid chains of length k that can be constructed, even when k

is a number of moderate size., Under these circumstances, the

rules of inference do not give us sufficient guidance to permit

11A technical difficulty arises from the fact that there is an
infinite number of valid substitutions. This difficulty can be
removed rather easily, but the question is irrelevant for the
purposes of this paper.

P.86R

- Y

us to construct the proof we are seeking; and we need additional
help from some system of heuristic.

The problem will be solved if we can devise a program for
constructing chains of theorems, not at random but in response
to cues that make discovery of a proof probable within a
reasonable computing time. For example, suppose the rules of
inference were such as to permit any given proof chain to be
continued, on the average, in ten different ways. Then there
would be ten thousand proof chains four steps in length (10“).
The expected number of proof chains that would have to be
examined to find any particular proof by random search 1s five
thousand. Suppose, however, that LT responded to cues that
permitted eight of the ten continuations at each step to be
eliminated from consideration. Then the number of proof chains
four steps in length that would have to be examined in full,
would be only sixteen (2“), and the expected number would be

only eight.

The Program of LT

We wish now to describe explicitly the program of LT. The
program is given in full in Section III} hence, in the text we
shall refer frequently to Section III for detail. We shall refer
to each routine by its name (e.g., LMc for the matching routine),
but we shall need some additional notation to refer to the main
segments of routines that do not themselves have names. The
names of these segments are given in Section III in the column
marked "Seg." In each segment there is generally one main opera-

tion to be performed; and this main operation, or sub-routine,

P=B68

. ‘”1()-

is usually surrounded by a number of procedural and control

operations that fit it into the larger routine. In ordinary
language, we would say that the "function"™ of the segment is
to perform the main operation that is contained in it. For
example, the main operation in the third segment of LMe is LSby,
a substitution. The function of this segment in the matching
program is to substitute one sub-expression for another in one
of the expressions being matched. Hence, we will name the
segment after the main operation: LMc(Sby). Similar designa-
tions will be used for the other segments of routines. This
notation emphasizes the fact that each routine consists in a
sequence (or branching tree) of main operations that are con-
nected by procedural and test operations. Thus, an abbreviated
description of the matching routine might be given as:

LMc

T Perform diagnostic tests,

LMc Recursion of matching with next elements in logic
expression.

Sby Substitute the element y for the element x.
Sbx Substitute the element x for the element y.

CN Compare variables in x and y.

Rp Replace connectives, if required and possible.

The Substitution Method

Let us take as our first example the very simple expression,
2.01, for which we have already given a proof. We suppose that,
when the problem is proposed, LT has in its theorem memory only
the axioms, 1.2 to 1.6. We wish to construct a proof (the one

given above, or any other valid proof) for 2.0l.

F.867
-30=

As the simplest possibility, let us consider proofs that

involve only the rules of substitution and replacement. We

may state the problem thus: how can we search for a proof of
the expression by substitution without considering all the valid
substitutions in the five axioms? We use two devices to focus
the search. Both of these involve "working backward™ from the
expression we wish to prove — for by taking account of the
characteristics of that expression, we can obtain cues as to

the most promising lines to follow:

1., In attempting substitutions, we will 1imit ourselves to
axioms (or other true theorems, if any have already been proved)
that are in some sense "similar" in structure to the theorem to
be proved. The routine that accomplishes this will be called

the test similarity routine, CSm.

2. In selecting the particular substitutions to be made in
a theorem that has been chosen for trial, we will attempt to
match the variables in that theorem to the variables in the
expfession to be proved, Similarly, we will try to use the rule
of replacement to match connectives. The routine in which these
various operations occur is called the matching routine, LMc.

Using these devices, the proposed routine for proving theorems-

the method of substitution, MSb-—works as follows. MSb(Sm): search

for an axiom or theorem that is similar to the expression to be
proved. MSb(Mc): when one is found, try to matech it with the ex-
pression to be proved; if a match is successful, the expression
is proved; if the list of axioms and theorems is exhausted with-

out producing a match, the method has failed. (Reference to
Section IIT will show that there is another segment, MSb(NAW),

-

P-868
-il~

that we have not mentioned. The function of this segment will
be discussed later in connection with the executive routine.)

To see in detail how the method operates, we next examine
the main operations, CSm and LMc, of the two segmenis of the
substitution method. For concreteness, we will cafry Eut these
operations explicitly for the proof of the expression 2.01l.
2.01 ? P % =P «de =P

Test for Similarity, CSm. We must state what we mean by

similarity. We start from a common-sense viewpoint and regard

two propositions as similar 4if they "look" similar to the eye

of a logician. In Section I we have already defined three

characteristics of an expression that can be used as criteria

of similarity. These are: K, the number of levels in the ex-

pression; J, the number of distinct variables in the expression;

and H, the number of variables in the expression.12
Applying these definitions to 2,01 (routines NK, NJ, and NH,

respectively), we find that K = 3, J = 1, and H = 3. That 1is,

2.0l has three levels, one distinct variable (p), and three variable

places., We may write this: D(2.01) =~ (3,1,3).

12The assertion is that two expressions having the same description
"look alike" in some undefined sense; and hence if we are seeking
to prove one of them as a theorem, while the other is an axlom or
theorem already proved, then the latter is likely construction
material for the proof of the former. Empirically, it turns out
that with the particular definition of similarity introduced here,
in proving the theorems of Chapter 2 of Principia Mathematica about
one theorem in five that is stored in the theorem memory turns out
to be similar to the expression we are seeking to prove. It is
easy to suggest a number of alternative, and guite different criteria
that would be equally symptomatic of "similarity". Uniqueness 1s of
no account here; all we are concerned with 1s that we have some
criteria that "work"™ - that select theorems suiltable for matching.

Vel B
I R

In the same way, we can write descriptions for the various
sub-expressions contained in 2.01 — in particular, the sub-
expressions to the left and to the right of the main connective,
respectively. We have for these: pL(2.01) = (2,1,2); and
DR(2.01) = (1,1,1).

Now, we say that two expressions, X and y, are similar if
they have identical left and right descriptions; 1l.e., if DL(x) =
nL(y) and DR(x) = DR(y). The routine for determining whether two
theorems are similar, CSm, consists of two segments: (1) csm(D),
a description segment, and (2) ¢csm(CD), a comparison of descrip-
tions. The description segment is made up of four description
routines, D, one each to compute pDL(x), DR(x), DL(y), and DR(y).

The comparison segment is made up of two compare description

routines, CD, one of which compares DL(x) with DL(y), the other
DR(x) with DR(y).
A diagram of the hierarchy of principal sub-routines in

testing similarity will look like this:

In the case of 2,01, the segment MSb(Sm) will search the
1ist of axioms and theorems and will find that axiom 1.2 is similar
to 2.01:
1.2] PV DP .9 P
for it, too, has the descriptions: DL(1.2) = (2,1,2); DR(1.2)
(1,1,1). Moreover, 1.2 is the only axiom that has this descrip-

tion.

B
Pati b8

-3

Matching Expressions, LMc. Next we carry out a point-by-

point comparison between 2.01, the expression to be proved, and

1.2, the axiom that is similar to it. We start with the main
connectives, and work systematically down the tree of the logic
expressions - always as far as possible to the left. 1In the

present case, the order in which we will match is: main con-

nective (P = none), connective of left sub-expression (P=L), left
variable of sub-expression, (P=LL), right variable of sub-expression
(P=LR), and right sub-expression (P=R),

The matching routine is fairly complicated, consisting of
six segments, but not all segments are employed each time two
elements are matched. The first segment, LMc(T), and the initial
operations of most of the other segments, consist of tests that
determine whether the two elements to be matched are already
identical, whether they can be made identical by substitution
(if one is a free variable) or by replacement (if both are con-
nectives), or — finally —whether matching is impossible. The
second segment, LMc(1lMc), is a recursion of the matching routine
with each of the next lower pair of elements in the tree of the
expression. This recursion segment operates only if the elements
to be matched in LMc are identical connectives (or have been

made 80).,

The third and fourth segments, LMc(Sby) and LMc(Sbx), apply
the rule of substitution when the tests have shown this to be

appropriate., LMc{Sby), which is executed whenever E(x) is a free

P=BEHR
~ -

variable,13 simply substitutes the expression X(y) for E(x).
LMc(Sbx), which is executed whenever E(y) is a free variable, sub-
stitutes the expression X(x) for E(y). 1In both cases, of course,
substitution must take place throughout the whole expression in
which the free variable occurs. This is taken care of automatic-
ally by the process LSb. Also, since LMc matches X(x) to X(y),
LMc(Sby) has priority over LMc(Sbx), as a careful examination of
the test network will reveal.

The fifth segment, LMc(CN), reports the successful termina-
tion of the matching program if E(x) and E(y) are identical
variables, its failure if they cannot be made identical by sub-
stitution.

The sixth segment, LMc(Rp), operates when E(x) and E(y) have
different connectives, The segment replaces the connective in x
by the connective in y whenever this replacement is legitimate,
and then returns control to the recursion segment.

By virtue of the recursion segment, the matching routine
will attempt to match each pair of elements; 1f successful, will
proceed to the next pair; if unsucecessful, will report faillure.
Hence, the routine will continue until it makes the theorem that
is being matched identical with the expression to be proved, or
until the matching fails.

The hierarchy of prinecipal routines looks like this:

LRpva
LRpav | = LMec

LSb/

13Essentially, a variable is free when no substitution has yet been

made for it. After any substitution it is bound and no longer
available for subsequent. substitutions. As previously noted, all
variables in expressions stored in the theorem memory are fraee.

F»Kég
.35

Returning to our specific example of two similar expressions,
1.2 and 2.01, we carry out the matching routine as follows:

2.01 ? P9 -pP +Fe =P
1.2 ! A v A 9. A
(We use A instead of p in 1.2 to indicate that the variable is
free (F).)

a. The main connectives agree: both are 4.

b. Proceeding downward to the left, the connective is 9 in
2,01, but v in 1.2. To change the v to 3, we must have (because
of the definition, 1.01), a - before the left-hand A in 1.2,

This we can obtain by making the substitution of -B for A in 1.2;
Having carried out this substitution, and having then replaced
(-B v -B) with (Bs -B), we have the following situation:

2.01 ? P * =D 9. =P

1.2 H B + -B «9. ~B

¢, Proceeding again to the left, we find B in 1.2°', but p
in 2.0l1. We therefore substitute p for B in 1.2', and now find
(after recursion through the remaining two elements) that we have
a complete match:

2,01 ? P? =P 9. =P
1.2"] P* =P s3. =D

Thus, we have discovered a proof of 2.01 (in fact, precisely
the proof we gave before), which consists in substituting the
variable -p for the variable in 1.2, and replacing the connective

v in 1.2 with 9.

O 0

LR |

This completes our outline of the method of substitution as
a routine for discovering proofs in symbolic logic. The method
may be viewed as an information process that 1s composed of a con-
siderable number oflmore elementary information processes arranged
to operate in highly conditional sequences. Each of the main
components — the test for similarity routine, and the matching
routine —is made up, in turn, of sub-routines., The test con-
ditions that control the branchings of the sequences depend in
a number of instances upon the outcomes of searches through the
theorem memory. Hence, the method of substitution represents
a complex information process in the sense in which we have
"defined the term. Combining the two diagrams deplicted above, we
can illustrate the hierarchy of the main operations that enter
into the substitution method:

NK\\~
gg;: D> CSm

e \\\\~M8b

B b
oo
The method is a heuristic one, for 1t employs cues, based on

the characteristics of the theorem to be proved, to limit the
range of its search; it does not systematically enumerate all
proofs. This use of cues represents a great saving in search,
but carries the penalty that a proof may not in fact be found.

The test of & heuristic is empirical: does it work?

P68
3')’

Moreover, the cues that are used in the method are not with-
out cost, For example, in order to limit matching attempts to
"similar" theorems, theorems must be described and compared. The
net saving in computing time, as compared with random search,
is measured by the reduction in the number of theorems that have
to be matched less the cost of carrying out the search and compare
for similarity routines. Stated otherwise, cues are economical
only if it is cheaper to obtain them than to obtain directly the
information for which they serve as cues,

To be sure, we have found a proof for one propogition in
" Principia; but how general is the substitution method? On examina-
tion of the 67 propositions in Chapter 2 of Principia, it appears
that some 21 can be proved by the method of substitution, in-
cluding for example: 2.01, 2.02, 2.03, 2.04, 2.05, 2.10, 2.12,
2.21, 2.26, 2.27. The remaining propositions evidently require
more powerful techniques of discovery and proof. It is evident,
for instance, that we must employ the rule of detachment.

The Method of Detachment

We will describe next the method of detachment, MDt, which, as

its name implies, incorporates the rule of detachment. The method,
of course, is not synonymous with the rule, but includes also
heuristic devices that select particular theorems to which the rule
is applied.

Let us review the principle of logie that underlies the
method. Suppose LT must prove that expression A is a theorem;

and assume that there are in the theorem memory two theorems, B

D865

- 38

and BwsAi. Then, by application of the rule of detachment to B and
BsA, A is derivable immediately.

We can generalize this procedure by combining matching (sub-
stitution and replacement) with detachment. Assume that the
theorem memory contains BY and B' < A'; that A is obtainable
from A' by matching; and that B*is obtainable from B" by matching.
Then we can construct a proof of A as follows: (1) By matching
with B", B! is a theorem. (2) Since B'9A' is also a theorem,
it follows by detachment that A' is a theorem. (3) By matching
with A', A 1is a theoren.

This settles the problem of constructing a valid proof by
the method of detachment. From the standpoint of the discovery
of a proof employing this method, the trick lies again in
narrowing down the search for B'3A' and B", so that these do not
have to be sought through a very large scale trial-and-error
search and substitution progrem.

Structure of the Detachment Method. The basic structure

of the detachment method is quite similar to that of the sub-
stitution method, for both methods utilize the same basic
operations. The first two segments of the detachment method,
MDt{(SmV) and MDt(SmCt), carry out searches for similar ex-
pressions, in a way that will be indicated more precisely below.
The next segment, MDt(Mc), carries out a matching of any ex-
ﬁression so found with the theorem to be proved. 'If the
matching is successful, a new problem is created by the segment
MDt(F). This problem is then attacked, in the final segment,

MD't (MSb), by the method of substitution.

.

Padés
~37-

Again, designate by A the expression to be proved. In MDt(SmV)

we search the theorem memory for theorems whose right sides are

similar (by the test, ¢Sm, descrived previously) to the whole
expression A. If we find such a theorem (call it T), we go to
segment MDt(Mc), and apply the matching operation to the right
side of T and to A. If we are successful in the matching, we
find the left side of T, MDt(P); and seek to prove by the method
of substitution that it is a theorem, MDt(MSb). For if the left
side of T is a theorem and T is a theorem, then by detachment,
éhe right side of T is a theorem. But A can be obtained from the
right side of T by subatitution: hence is a theorem. (Note that
a check is made to see that T has 9 for a connective.)

Contraction. If the detachment method fails to find a proof

in the manner just described, a new attempt is made by means of
the second segment, MDt(SmCt), employing a different criterion of
similarity from the one we have used thus far. If the theorem

is similar, the method proceeds with the matching segment exactly
as before.

To see what is involved in this generalized notion of
similarity, let us consider two expressions, A and A', with different
descriptions. If A has more levels and variable places than A',
it is still possible that A is derivable from A* by substitution;
specifically, by substituting appropriate molecular expressions
for the variables of A, For exampls, take as A the expression:
2.06 ? P9Q ¢4 Qer .4. par,
for which we have DL(2.06) = (2,2,2), DR(2.06)= (3,3,4): and take

as A' the expression:

At ? a .9, bayc

P-868
-4 O=

for which we have DL(A') = (1,1,1), DR(A') - (2,2,2).

If in A' we substitute psq for a, q9r for b, and par for c,
we obtain 2.06. Operating in the reverse direction, if we
contract 2.06 by making the inverse substitutions, we obtain A'.
We can therefore refer to At as "2,06 viewed as contracted",

Since the purpose in searching for similar theorems is to
find appropriate materials to which to apply the matching routine,
there is no reason why we should not use this more general notion
of similarity if it proves effective in finding materials that
are useful.

In general, what parts of an expression should be considered
as units in the search for proofs is not a "given" for the problem
solver. LT makes an explicit decision each time it looks for
similar expressions as to what subexpressions will be taken as
uniés. In contracting 2.06, a decision has been made that the
elements p, q, and r are too small, and that more aggregative
elements, e.g., (p9sq) = a, should be perceived as units.

Examination of the routines for describing expressions
(NH, NX, NJ) will reveal that these routines in fact count units
rather than variables, Normally, the variables are the units used
in description, for VV precedes CSm in every program except MDt.
In the latter program, however, it is sometimes useful to view
expressions as contracted, by means of V(Ct.

Example of Proof by Detachment. To illustrate the method of

detachment, let us carry out explicitly the proof of 2,06:

2.06 ? PP ¢3! Qo9F .=e pPIYT

P-868
whle

The reader may verify that this theorem cannot be proved
by substitution in the axioms and earlier theorems. Moreover,
the detachment method without contraction will also fail, for
there is no theorem whose right side is similar to 2.06. However,
we have already seen that when we contract 2.06, we obtain:

At ? a .9. b 9 ¢
where psq has been contracted to a, q4r to b, and psr to ¢. We
now have DL(A') = (1,1,1) and DR(A') = (2,2,2), descriptions
that are identical with the descriptions of the sub-expressions
of the right side of 2.04.

2.04 1 A 4. B9 C :9: Bae. A aC

A a 9. b ac

Having selected 2,04 by use of the routine MDt(SmCt), we now

proceed to match its right side with 2.06 in segment MDt(Mc):

2.04 H ' A +. B - c 1 B e A - C
2.06 ? P?Q «=: Q9T o paIr
2.040] QPr 9! P9Q ede DI oidle DPIQ e QA 9. PIr

We have now created a new problem to replace the original one:
To prove that the left side of 2.04' (the part underscored) is a
theorem. We apply the method of substitution, MDt(MSb). The
search of the theorem memory discloses 2.05 to be similar to the
left side of 2,04', and we proceed to match them:
2,04'L ? QPr +9: P9Q < pPaIr
2,05] " A3B .4: CaA .2. C4B

It is easy to see that with the substitution of q for A, r
for B, and p for ¢, the matching will be successful. Hence we

have B (2.05 with the indicated substitution), and B4A (2.04'),

P-8&8

gl

from which A (2.06) follows by the rule of detachment.

The diasgram below summarizes the principal routines incorporated
in the method of detachment. A comparison of this diagram with
the one for the substitution method shows clearly that both
methods rest on the same component processes, with minor modifi-
cations and new combinations and conditions. The sole new process

‘involved in detachment is the viewing of theorems as contracted.

L'A'

Vet \\\\

MDt
] CSm
LMc

MSb

The Chaining Method

A number of expressions that do not yield to the method of
substitution can be proved by the method of detachment. We shall
add an additional method, however, to the repertoire available to

LT. We shall call this method chaining, MCh. Like the methods

previously described, chaining involves heuristic procedures which
we shall consider first,

Theorem 2.06, which we have just proved, embodies one form of
the principle of the syllogism (2.05 is another form of this
principle). Now suppose Tl’ (p#q) is a true theorem, and T2,
(qer) is another true theorem. Theorem 2.06 is of the form:

Tl e e Tz ")E
where E is (par), an expression not known to be true. By detach-

ment, from 1 Tl and ! Tl.a.TzeE, we get 1 T,9E. By a second

detachment, from 1 T2 and | T,9E, we get § E. Hence, if we know

p+q and q9r to be true, we can construct a proof of psr by means

FauB6
43

of two detachments with the use of 2,.06. Instead of carrying
through this derivation explicitly in each instance, we simply
construct a program that makes direct use of the transitivity of
syllogism. This proof method is the basis for chaining.

Suppose that we wish to prove A4C. We search for a theoren,
T (with + for a connective) whose left side is similar to A,
using the segment MCh(SmF). We match the left side of T with A,
MCh(McF), and if we are successful, we have then proved a theorem
of the form A4B, for T, as modified by matching, 1s of this form.
We check, first, in segment MCh (McR) whether we can simply
match B to C. If we succeed, we have proved the theorem. If we
fail, we now construct, by segment MCh(P), the expression BaC,
and attempt to prove this expression by substitution, MCh(MSb).
If we are successful, we now have a chain: A9B, B4C. Then by
syllogism, as indicated above, we obtain A4C, the expression we
wished to prove,.

The procedure just described is chaining forward. Alter-
natively, we may chain backward. That is, to prove A4C, we may
search for a theorem of the form B4C; then try to prove A4B by
substitution.

Proof-by the chaining method is illustrated by:

2.08 ? PP
A search for theorems that have left sides similar to 2.08 yields
1.3, 2.02, and 2.07. The latter is:

2.07 t Pe=spVD

Pafted

e

bl

If we take 2.07 as the (A3B) of the scheme given above,
then B is (pvp). Two theorems have left sides similar to B: 1.2
and 2.01. An attempt to match the left side of 2.01 to the
right side of 2.07 will be unsuccessful, but the matching is
immediate with 1.2:
2.07 | t Pe3.pvp
1.2 t PVDP«3.p
Hence we can take 1.2 as the (B3C) of the chaining method. We
.now form (A+C) by joining the left side of 2.07 to the right side
of 1.2 by . The result is 2,08:
2,08 ! Ps9.p
’ The chaining method is summarized by the following diagram,
which shows that the method aéain makes use of tests for
similarity, matching, and substitution:

T~

ILM¢ —————= MCh

CSm

MSb

The Executive Routine

It remains to complete the specification of LT in two
directions; first, to assemble the three methods that have been
described 1nto a coherent program; and second, to show how the
information processes in terms of which LT has been described here
can be specified precisely in terms of the elementary processes
listed in Section I. The latter task is carried out in detail
in Section III. We will turn our attention here to the former,

which is embodied in the executive routine, Ex.

Pa—if%?,{}@
-5

In its first segment, Ex(R), the executive routine reads a
new expression that is presented to it for proof, and places it
in a working momory.lh In the next three segments, Ex(MSb),
Ex(MDt), and Ex(MCh), successive attempts are made to prove the
expression by the methods of substitution, detachment, and
chaining, respectively. If a proof is obtained by one of these
methods, the executive routine writes the proof, Ex(WP): and
stores the newly-proved theorem (changing all its variables to
free variables) in the theorem memory, Ex(ST).

To explain what happens if the three methods are unsuccess-
ful, we have to take up some details that were omitted above.

,These have to do with the creation of subsidiary problems and with

stop rules,

o

Subsidiary problems. Both detachment and chaining are two-

step methods. Suppose we wish to prove A. In detachment, we
try to find a theorem, BsA, and if we are successful, we then try

to prove B. The task of proving B we may call a subsidiary

problem.

Suppose we wish to prove asb. In chaining, we try to find a
theorem, asc, and if we are successful, we then try to prove c-b.

The task of proving cab is also a subsidiary problem.

1hCertain segments of Ex, in particular Ex(R), Ex(WP), Ex(ST) and
Ex(WNP), are not written formally in Section III in terms of the
primitives but are simply indicated by parentheses., It would be
rather simple to formalize them, but this would further lengthen
the description of the program.

P.din

ey Py

Within both the detachment and chaining methods, only the
method of substitution is applied to the subsidiary problem. If
that method fails, failure is reported for the main problem.

But before control is shifted back to the executive routine, the
main element of the subsidiary problem is stored in the problem
list, P, in the storage memory. (The operation that stores the
problem in the problem list is the cperation SEN that can be
found in segment MDt(P) and segment MCh(P).)

When the three methods have failed for a given problem, the
executive routine stores it in the inactive problem list, Q. It
then selects from the problem list, P, an expression that is, in
& certain sense, the simplest ~— specifically, an expression with
the smallest possible number of levels, X, Ex(CK). It erases
this new subsidiary problem from P; checks to make certain it does
not duplicate one previously attempted, Ex(CX); and then tries

to solve this subsidiary problem by the methods of detachment and

Chaining-ls This sequence is repeated until some subsidiary
problem is solved (in which case the main problem is also solved),
or until no problems remain on the problem 1list, or until the
other stop rule, to be described, comes into operation. In the
latter two cases, the routine reporte that it is unable to prove

the theorem, Ex(WNP).

15

There is no need to attempt to prove the subsidiary problem by
substitution, since an unsuccessful substitution attempt was made
immediately before the expression was stored in the subsidiary
problem list,

The check to prevent duplication of subsidiary problems,
Ex(CX), is handled as follows: for each problem that is selected
from 1ist P by Ex(CK), a check is made, by Ex(CX), against all
expressions in the inactive problem list, Q, and if the new
problem duplicates any expression found there, it is dropped.

" The main operation of this segment, CX, applies the same basic
tests of identity of elements that are applied in the matching
program, but does not modify the expressions to make them match.

p Stop Rules. Since all proof ﬁethods may fail, even if the

expression given to LT is a gentiine theorem, the executive
routine needs a stop rule. One stop rule is provided by the
exhaustion of list P, but there is no guarantee that the list
will ever be exhausted., A second stop rule i1s provided by an
operation that measures the total amount of "™work"™ that has been
done in attempting to prove a theorem, and ﬁhat terminates the
program with a "no proof" report when the total work exceeds a
specified amount. The first operation in the substitution routine,
NAW, tallies one for each time the routine is used. This tally
is kept in a special location, W, in the storage memory. The
executive routine, just before it seeks a new subsidiary problen,
checks the cumulative tally in this register, Ex(CW), and if the
tally exceeds a given limit, terminates the program. Since the
substitution routine is used in each of the methods, the number
of substitutions attempted seems to be one reasonable index of

the amount of work that has been done.

P-rbE

b6~

This stop rule operates as a global constraint on the total
work applied in trying to prove a single theorem. The rule does
not govern the direction in which this effort is expended. The
latter is determined by the priority rule previously described
for selecting subsidiary problems from the problem memory and by
the other elements of LT's progran.

Learning Processes

The program we have described is primarily a performance
program rather than a learning program. But, although the program
of LT does not change as it accumulates experience in solving
problems, learning does take place in one very important respect.
The program stores the new theorems it proves, and these theorems
are then available as buillding blocks for the proofs of sub-
sequent theorems. Thus, in the theorems used as examples in this
paper, 2.06 was proved with the aid of 2.05 and 2.04, and 2.08
was proved with the aid of 2.07. Without this form of learning
it is doubtful whether the program would‘prove any but the first

few theorems of Chapter 2 in a reasonable number of steps.

-

III

The Complete Program
for the Logic Theorist

This Section is divided into two parts. The
first part constitutes the program as described in
the text, including the following routines; Ex:

MCh, MDt, MSb; LMc, LSb, LRpsv, LRpva, VV, VCt; CX:
C5m, CD, D, NX, NH, NJ. These routines are preceded
by & 1list of the most important primitive IP's —
those that are used in several routines. Following
each routine is a supplementary 1list of primitive
IP*s used in the definition of that routine.

The second part of this Section consists of
routines for five IP's —those Store instructions
that are marked with asterisks (#) — which up to
this point have been treated as primitives.

Principal Primitive Instructions

A OPER L CR B

B b Branch to b (9b).
BHB In higher instruction, sb.
BHN In higher instruction, Jnext.

FEF Xy b Find the first E in A(x) and
put in y; if none, 4b.

FEN Xy b Find the E in A(x) next after
E{(y), put in y; then +b. If
none (end of list), Jnext.

FL xy Find EL(x) and put in y; if
none, leave y blank.,

FR Xy Find ER(x) and put in y; if
none, leave y blank.

PE Xy Put E(x) in E(y); E(x) remains.

S x Store E(x) back in A(x) (match

on P); if not there, store E(x)
at end of A(x).

SEN Xy Store E(x) as next E in A(y);
E(x) now last item in A(y).
#3X Xy Store a copy of X(x) at (new)
A(y). E(x§ = M,
TC x b If C(x% = 3 (implies), ab.
TV x b If E(x) = V, ab,

»»»»» R . b G e i S e AR, DR P e £t e ke eon ot

w50~

A OPER L CR B Seg.
Ex Executive routine
(Read problem X) R
(Put EM(X) in 1)
-M3b 1 G MSb
A -MDt 1 G MDt
-MCh 1 G MCh
SEN 1 Q ¥(1) is finished.
CWG H CW
B FEF P 1l H CK Find problem with
NK 1 lowest K.
C ~FEN P 2 D
NK 2
CKG 21 c
PE 21
PK 21
B C
D E 1P CX Remove duplicates
FEF Q3 F of previous problems.
E CX 13 B
- FEN Q3 E
F B A
G (Write proof.) WP Succeeds in proving P.
(Xx(1) a theorem) ST
(stop)
H (Write:no proof) WNP Fails to find proof.
(stop)
Primitives
CKG Xy b If K(x)>K(y), 9b.
CWG b If W(work done) > 1imit, 4b.
E X y Erase E(x) in A(y).

Note: There are six IP*s in the executive routine
that are not formally defined in LT. These are

written in parentheses above:

read problem, find

problem and put in working memory 1, write proof,
store expression as theorem, write "no proof",

and stop.

P-868
-51-

A _OQOPER L CRB Seg.
Chaining method
If can't prove X(x) by
chaining, +b; Store new
MCh X b problems in P,
-TCs» L D T C(x) must be 4,
LAY L
FL L1
FR L 2
FEF T 3 D
A -TCs 3 c T must have C = 4,
Vv 3
SX 34 Copy, to work on T.
FL 4 5
FR 4 6
-CSm 15 B SmF
-LMe 51 E McF
B -C3Sm 2 6 C SmB
~LMe 6 2 F McB
C TFEN T3 A Find next T and repeat.
D BHB
E PE 25 Put E(2) and E(6) in
PE 6 1 proper working memory.
-LMe 15 G MeR
F AM 7 S Creat EM for new X.
PCa 7 Fix connective.
S 7 Store parts.
SEN 7P
SXL 17
SXR 5 7
MSb 7 c MSb
G BHN
Primitives
PCs x Put C(x) = 3 (implies).
#5XL Xy Store X(x) in A(y) as XL(y).
#SXR Xy Store X(x) in A(y) as XR(y).

r"‘
-5

A OPER L C R Seg.
Detachment method
If can't prove X(x) by
detachment,+b. Store
MDt X new problems in P.
FEF T1 T
A TCes 1 T must have C=J.
A 1
FR 12
Vv L SmV
CSm L 2
VCt L SmCt Change view.
CSm L2
B FEN T 1 Find next T and repeat.
BHB
D SX 13 Copy to work on T.
FR 3 4
LMc 4L L Me
FL 35 P
SXM 5 6 Create new X.
S 6 Store away fixed ME.
SEN 6 P
MSb 6 MSb
BHN
Primitives
#3XM x ¥ Store X(x) at (new) A(y) as
main expression.
A OPER L CR Seg.
Substitution method
If can't prove X(x) by
MSb X substitution, 3b.
NAW NAW Count one unit of worke.
vV L Sm
FEF T1
A VYV 1
CSm L1
B FEN T1 Find next T and repeat.
C BHB
sX 12 Mc
LMe 2 L
BHN
Primitives
NAW Add one to W (work done).

A OPER L

C

R

LMc

»

o

CGG
CGG
TV
TV
-CC
FL
FL
LMc
FR
LMe
BHN

wotrtHFHorrtoHr o

FEWNODODHO

>

TV
-TF
NSGG
FM
LSH
BHN

w
o N ol all ol ol

Hw o

C TV

D =TF
NSGG
FM
LSb
BHN

laNoNeNeNe
eRY, e

E TF
-TV
-CN

BHN

4

F -LRpav L
LRpvs L

G LMe L
BHN

H BHB

Primitives

o

oG

[wli=oRes]

i Q

Pt @
-5

Seg.
Matching routine
Match X(x) to X(y); if
can't, 2b.

Now G(x) = G(y).

IMc

Mc left sub-expression.

Mc right sub-expression.

Assures Sb everywhere.

Sbx

Asszures Sb everywhere,

CN

Rp LRp's are self-testing.

CcC
CGG
CN
FM
NSGG
TF

MMM KM K

R R

oo o

If C(x) = C(y), +b.
I1f G{(x) 2> a(y), +b.
If N(x) = N(y), 9b.
Find EM(x) and put in y.
Subtract G(x) from G(y).
If E(x) is free, ab.

A OPER L CR B Seg.

Substitution routine
Substitute X(x) for
E(y) (=V) in X(z) (=M).

1.Sb X v z
FEF L1 F F
A CPS 11 B E(1) must belong to X(x).
CN 1 C G
B FEN L1 A
C FEF R 2 F Sb Search through X(z).
D =GN 2 C E
PE L 3
NAGG 2 3 G!'s add in Sb,
SXE 32
E FEN R 2 D Find next E(z), repeat.
F BHN
G AN A LS
LSb L CR
B C
Primitives
AN x Assign an unused name to E(r).
CN X b If N{x) = N(y)ab.
CPS xy b If E(x) subelement of E(y)+b
(p(x)2 P(y)).
NAGG x ¥ Add G(x) to G(y); result in
v G(y).
#SXE x ¥y Store X(x) in A(y) in place
of E(y) (=V).
A OPER L CR B Seg.
Replacement of - with v.
If C(x)=3, replace
LRpsv X b with v; if not 9b.
‘TC+ L A T
BHB
A PCv L Pv Fix E(x).
S L
FL L1 Fix EL(x).
NAG 1
5 1
BHN
Primitives
NAG x Add one to G(x)

PCvy x Put C(x) = v.

A OPER L

i

LRpve x

~-TCv
FL
TGG
-TV
-TS5b
A BHB

e el

B PE
NAG
FM
LSb
FL

C PCa
S
NSG -
3
BHN

HHEEEDD D

Primitives

ol AV N

A

[wo il @]

Seg.

Sb

Replacement of v with ».

If C(x) =v and G(EL(x))
>0, replace v with 4;
if not +b.

Fix x.

/

FM
NAG
NSG
PC
TGG

HHR MK

Find EM(x) and put in y.
Add one to G(x).
Subtract one from G(x).
Put C(x) = 9

If G(x) > 04b.

A _OPER L

vV

FEF

A PUB
- TV
PU

B 5
FEN
BHN

ol e e ol o B Y]

Primitives

Seg.

View variables as units.

Erase old unit.

Find next E and repeat.

PU x
PUB x

Make E(x) a unit, (U).
Make U(x) blank.

A OPER L CRB Seg.
View as contracted
Make units of binary
expressions and
VCt X isoclated variables
TV L C T
FL L1 VCt
FR L 2
TV 1l B
VCt 1l Recursion
TV 2 E
A VCt 2 Recursion
PUB L
3 L
BHN
B -TV 2 D
PUB 1 Ct Blank V's of Ct unit
S 1l
PUB 2
K] 2 _
TN L C Give X(x) a name if needed
AN L
C PU L
5 L
BHN
D PU 1 A Make left (isolated)
5 1 variable a unit
B A XR(x) still to be done.
E PU 2
3 2 Make right (isolated)
BHN variable a unit.
Primitives
AN X Assign E(x) an unused name.

(See VV for PU and PUB)
TN x b If E(x) has a name 9b.

Fagng
-57.

A OPER_ L C R B Seg.
Compare expressions
Compare X(x) with X(y); if
CX X v b they match, 49b.
CGG L C B T
CGG CL B G(L) = G(R), otherwise B.
TV L A
TV C B
-CC L C B C(L) = c(R)
FL L1 Y CX Recursion down tree of
FL C 2 expressions.
~CX 12 B
FR L 3
FR C 4
~CX 34 B
BHB
A =TV C B CN L and C both variables;
-CN L C B with identical names,
BHB -
B BHN
Primitives

(For CC, CGG, and CN, see LMc)

A OPER L CR B Seg.
Similar expressions test
If DL(x) = DL(y) and
CSm xy b DR(x) = DR(y), -b.
FL L1 D
FR L 2
D 1
D 2
FL c 3
FR cC 4
D 3
D 4
~CD 1 3 A Ch
-CD 2 4 A
BHB

A BHN

Tl HR
-5

A _OPER L CR B Seg.

Compare descriptions
If K(x) = K(y), J(x) =
L J(y), and H(x) = H(y)»b.

CDh

»

-CK

~CJ

~CH
BHB

Def: If K(x) = K(y)ab.
Def: If J(x) = J(y)sb.
Def: If H(x) = H{y)sb.

imNallal
OO0 K
=

A BHN

A_OPER L CR B Seg.

D

»

Describe

NK
NJ
NH
BHN

—_—

A OPER L CR B Seg.

MMM

NK Count levels

x

TU
TB
FL
NK
FR
NK
CKG
PK
A NAK
B BHN

o >

NK

CK
KL

BV 0N
[l = R
(@}

C PK 21 KR
B A

Primitives

CKG
NAK
PK
TB
TU

Yy b If K(x)> K(y),+b.
Add one to K(x).
Put K(x) in K(y).
b If E(x) is blank -b.
b If E(x) is a unit =b.

WM ON MK
o

A OPER L CR B Seg.
NJ X Count distinct variables
AA 1l List for counted-V.
FEF L 2 E F Find first E of X(x).
A -CPS 2 L D
-TU 2 D
FEF 13 C Find first V of list.
B CHN 2 3 D CN
FEN 1 3 B Find next V of 1list.
C BSEN 2 1
NAJ L A
FEN L 2 A Find next E of X(x).
£ BHN
Primitives
AA x Assign an unused list to A(x).
CN xy b If N%x) = N(y),=b.
CPS xy b If E(x) subelement of E(y),»b.
(P(x) o P(y)).
NAJ x Add one to J(x).
TU x b If E(x) is a unit,sb.
b e o i o i e s e e et PR i . o ottt —roeed
A OPER L CR B Seg.
NH X Count variable places
FEF L1 C
A -CPS 1 L B
-TU 1 B
NAH L
B FEN L 1 A
C BHN
Primitives
CPS xy b If E{x) subelement of E(y)4b.
(P(x)> P(y)).
NAH x Add one to H(x)

TU x b If E(x) is a unit,ab.

- v
Yo AT

Do

PART 2: Reduction of procedural processes If%

The Store instructions that rewrite expressions
in various ways can be reduced to processes more
like the rest of the primitive set. The new primi-
tives required are (a? two (PA and CP) which belong
to types of operations already considered, and (b)
four of a new type to manipulate the P sequences.
The latter operations insert and delete subse-
quences from the front end of a given sequence. Thus
if P = LRRL and P' = LRRLRLR, then P" = Pt _ P = RLR
and P" + P = LRRLRLR. Observe that subtraction can
only be performed when the subtrahand is an initial
segment of the minuend, and also that addition is not
commutative. All these routines involve bringing in
the elements, one by one, modifying them and storing
them in the new 1list.

Store a copy of X(x) at Store X(x) in A(y) in
(new) A(y) (E(x)=M). place of E(y) (E(y)=V)
(take E(x) from w.m.)
A OPER L CRB

A OPER L CR B

SX Xy
SXE X y
AA c
FEF L1 B FEF L1 D
A PE 12 A CP L1 E
PM c 2 CPS 1L C
S 2 PE 1l 2
FEN L1 A B PM C 2
A BHN HSPP L 2
HAPP C 2
S 2
Store X(x) at (new) C FEN L1 A
A(y) as main expression D BHN
A OPER L C R B E PE L 2
B B
SIM Xy
AA C
FEF L1 C
A CPs 1L B
PE 1 2
PM c 2
HSPP L 2
S 2
B FEN L1 A

C BHN

A

Store X(x) in A(y) Store X(x) in A(y)
as XL(y). as XR(y).
A OPER L C R B A OPER L C R B
SXL X v SXR X vy
FEF L. 1 C FEF L1 C
A CPS 1L B CPS 1L B
PE 12 PE 12
PM C 2 PM C 2
HSFF I, 2 HSPP L 2
HAPL 2 HAPR 2
HAPP C 2 HAPP C 2
S 2 S 2
B FEN L1 A FEN L1
C BHN BHN
Primitives
AA x Assign an unused list to A(x).
CP xy b If P(x) = P(y) +b (locates

"same™ element even though V,
G, etc. have been modified).

CPS Xy b If E(x) subelement of E(y),b
(P(x) >P(y)).

HAPL x Add a Left to front of P(x).

HAPR x Add a Right to front of P(x).

HAPP x ¥y Add P(x) to front of P(y).

HSPP x y Subtract P(x) from front of
P(y).

PA xy Put A(x) in A(y).

Conclusion

In this paper we have specified in detail an information
processing system that is able to discover, using heuristic
methods, proofs for theorems in symbolic logzic. We have con-
fined ourselves to description, and have not attempted to
generalize in abstract form about complex information processing.
Because of the nature of the description, involving considerable
rigor and detail, it may be useful to set out in conclusion the
main features of LT, especlally as these appear to reflect
basic characteristics of complex systems.

First of all, LT can be specified at all only because its
structure is basically hierarchical, and makes repeated use of
both iteration and recursion., So true is this, that one of
LT's main features, the use of a problem-subproblem hierarchy,
is hardly visible in the program at all.

LT offers no guarantee of finding a proof; on the other
hand, it brings to its task a number of different heuristic
methods for achleving its goals. All of these methods are
important in making LT sufficiently powerful to find proofs in
most cases, and to find them with a reasonable amount of con-
putation, but not all of them are essential. Without chaining,
for instance, LT could still funetion. The methods MSb and
MDt still provide it with ways to prove theorems —and even some
theorems more easily provable by MCh would yield to the more

directly "brute force'" approach of the other two.

1]

LT i1s still a very simple process compared, for instance,
with the array of methods, techniques, and concepts used by a
human logician. For example, the concepts of commutativity and
associativity are nowhere to be found in LT. The analysis of
LT and its variations is a subject for later papers. However,
the following facts, based on hand simulation, may help put LT
in perspective, LT will prove in sequence most of the 60 odd

theorems in Chapter 2 of Principia Mathematica., With some

extension in the variety of methods and cues employed, it will
prove most of the theorems in Chapter 3, in which another con-
nective, "and", is introduced.l6

LT uses similarity-testing and matching as a multi-stage
search and selection process. The questions of efficiency
involved in such processes have already been commented upon iwn
Jection II. Additional variation and complexity enters the
program throug!® the alternative modes, VV and VCT, for per-
celving the logic expressions in the course of testing similarity
and of matchirg.

In these and other ways the logic theorist is an instructive
instance of a complex information process. We expect to learn
more about such processes when we have realized the logic theorist
in a computér and studied its operatians'ompiricaily; and when

the logic theorist will have been joined by similar systems capable

of performing 6ther complex information processing tasks.

léA program to do this has been developed and hand simulated by
Mr. Kalman Cohen. We know nothing, as yet, about what will be
required for an extension to the predicate calculus or to other
types of problem solving.

