THE LOGIC THEORY MACHINE
A COMPLEX INFORMATION PROCESSING SYSTEM

by

Allen Newell and Herbert A. Simon

P-868

June 15, 1956
The Logic Theory Machine

In the language we have constructed, we have variables (atomic sentences): \(p, q, r, A, B, C, \ldots \) and connectives: \(\neg \) (not), \(v \) (or), \(\rightarrow \) (implies). The connectives are used to combine the variables into expressions (molecular sentences). We have already considered one example of an expression:

\[l.7 \quad -p \rightarrow q \lor -p \]

The task set for LT will be to prove that certain expressions are theorems—that is, that they can be derived by application of specified rules of inference from a set of primitive sentences or axioms.

The two connectives, \(- \) and \(v \), are taken as primitives. The third connective, \(\rightarrow \), is defined in terms of the other two, thus:

\[l.01 \quad p \rightarrow q \equiv -p \lor q \]

The five axioms that are postulated to be true are:

\[l.2 \quad p \lor p \rightarrow p \]
\[l.3 \quad p \rightarrow q \lor p \]
\[l.4 \quad p \lor q \rightarrow q \lor p \]
\[l.5 \quad p \lor q \lor r \rightarrow q \lor p \lor r \]
\[l.6 \quad p \rightarrow q \rightarrow r \lor p \rightarrow r \lor q \]

Each of these axioms is stored as a list in the theorem memory I, with all its variables marked free, \(F \), in their respective elements.

From the axioms other true expressions can be derived as theorems. In the system of Principia Mathematica, there are two rules of inference by means of which new theorems can be
derived from true expressions (theorems and axioms). These are:

Rule of Substitution: If A(p) is any true expression containing the variable p, and B any expression, then A(B) is also a true expression.

Rule of Detachment: If A is any true expression, and the expression A → B is also true, then B is a true expression.

To these two rules of inference is added the rule of replacement, which states that an expression may be replaced by its definition. In the present context, the only definition is 1.01, hence the rule of replacement permits any occurrence of (-pvq) in an expression to be replaced with (p+q), and any occurrence of (p+q) to be replaced with (-pvq). ⁹

In this system, then, a proof is a sequence of expressions, the first of which are accepted as axioms or as theorems, and each of the remainder of which is obtained from one or two of the preceding by the operations of substitution, detachment, or replacement.

Example: prove 2.01, p → -p .→. -p:

1. ⊢ p v p .→. p (axiom 1.2)⁷
2. ⊢ -p v -p .→. -p (by substitution of -p for p)
3. ⊢ p ↔ -p .→. -p (by replacement on left)

⁹As we shall see, 1.01 is not held in storage memory, but is represented, instead, by two routines for actually performing the replacements.

¹⁰The exclamation point in front of an expression indicates that the expression in question is asserted to be true. To designate an expression whose truth has not been demonstrated, we will use a question mark preceding the expression.
The problem now is to specify a program for LT such that, when a problem is proposed in the form of a theorem to be proved (like 2.01 above), a proof will be discovered and constructed. First, it should be observed that there is a systematic algorithm for constructing such a proof, should one exist. Starting with the five axioms, we construct all the theorems that can be obtained from them by a single application of the rules of substitution, detachment, or replacement. We thus obtain the set of all theorems that can be obtained from the axioms by proofs not more than one step in length. Repeating this process with the enlarged set of theorems, we obtain the set of all theorems that can be derived from the axioms by proofs not more than two steps in length. Continuing, we finally obtain the set of theorems that can be derived by proofs not more than n steps in length.

Now, if the theorem in which we are interested possesses a proof k steps in length, we can, in principle, discover it by constructing all valid proof chains of length not more than k, and selecting any one of these that terminates in the theorem in question. This "in principle" possibility is, in fact, computationally infeasible because of the very large number of valid chains of length k that can be constructed, even when k is a number of moderate size. Under these circumstances, the rules of inference do not give us sufficient guidance to permit

11A technical difficulty arises from the fact that there is an infinite number of valid substitutions. This difficulty can be removed rather easily, but the question is irrelevant for the purposes of this paper.
us to construct the proof we are seeking; and we need additional help from some system of heuristic.

The problem will be solved if we can devise a program for constructing chains of theorems, not at random but in response to cues that make discovery of a proof probable within a reasonable computing time. For example, suppose the rules of inference were such as to permit any given proof chain to be continued, on the average, in ten different ways. Then there would be ten thousand proof chains four steps in length \(10^4\). The expected number of proof chains that would have to be examined to find any particular proof by random search is five thousand. Suppose, however, that LT responded to cues that permitted eight of the ten continuations at each step to be eliminated from consideration. Then the number of proof chains four steps in length that would have to be examined in full, would be only sixteen \(2^4\), and the expected number would be only eight.

The Program of LT

We wish now to describe explicitly the program of LT. The program is given in full in Section III; hence, in the text we shall refer frequently to Section III for detail. We shall refer to each routine by its name (e.g., LMc for the matching routine), but we shall need some additional notation to refer to the main segments of routines that do not themselves have names. The names of these segments are given in Section III in the column marked "Seg." In each segment there is generally one main operation to be performed; and this main operation, or sub-routine,
is usually surrounded by a number of procedural and control operations that fit it into the larger routine. In ordinary language, we would say that the "function" of the segment is to perform the main operation that is contained in it. For example, the main operation in the third segment of LMc is LSby, a substitution. The function of this segment in the matching program is to substitute one sub-expression for another in one of the expressions being matched. Hence, we will name the segment after the main operation: LMc(Sby). Similar designations will be used for the other segments of routines. This notation emphasizes the fact that each routine consists in a sequence (or branching tree) of main operations that are connected by procedural and test operations. Thus, an abbreviated description of the matching routine might be given as:

\[
\begin{align*}
\text{LMc} \\
T & \quad \text{Perform diagnostic tests.} \\
\text{LMc} & \quad \text{Recursion of matching with next elements in logic expression.} \\
\text{Sby} & \quad \text{Substitute the element } y \text{ for the element } x. \\
\text{Sbx} & \quad \text{Substitute the element } x \text{ for the element } y. \\
\text{CN} & \quad \text{Compare variables in } x \text{ and } y. \\
\text{Rp} & \quad \text{Replace connectives, if required and possible.}
\end{align*}
\]

The Substitution Method

Let us take as our first example the very simple expression, 2.01, for which we have already given a proof. We suppose that, when the problem is proposed, LT has in its theorem memory only the axioms, 1.2 to 1.6. We wish to construct a proof (the one given above, or any other valid proof) for 2.01.
As the simplest possibility, let us consider proofs that involve only the rules of substitution and replacement. We may state the problem thus: how can we search for a proof of the expression by substitution without considering all the valid substitutions in the five axioms? We use two devices to focus the search. Both of these involve "working backward" from the expression we wish to prove — for by taking account of the characteristics of that expression, we can obtain cues as to the most promising lines to follow:

1. In attempting substitutions, we will limit ourselves to axioms (or other true theorems, if any have already been proved) that are in some sense "similar" in structure to the theorem to be proved. The routine that accomplishes this will be called the test similarity routine, CSm.

2. In selecting the particular substitutions to be made in a theorem that has been chosen for trial, we will attempt to match the variables in that theorem to the variables in the expression to be proved. Similarly, we will try to use the rule of replacement to match connectives. The routine in which these various operations occur is called the matching routine, LMc.

Using these devices, the proposed routine for proving theorems—the method of substitution, MSb—works as follows. MSb(Sm): search for an axiom or theorem that is similar to the expression to be proved. MSb(Mc): when one is found, try to match it with the expression to be proved; if a match is successful, the expression is proved; if the list of axioms and theorems is exhausted without producing a match, the method has failed. (Reference to Section III will show that there is another segment, MSb(NAW),
that we have not mentioned. The function of this segment will be discussed later in connection with the executive routine.)

To see in detail how the method operates, we next examine the main operations, CSm and LMc, of the two segments of the substitution method. For concreteness, we will carry out these operations explicitly for the proof of the expression 2.01.

2.01

\[? \quad p \rightarrow -p \rightarrow -p \]

Test for Similarity, CSm. We must state what we mean by similarity. We start from a common-sense viewpoint and regard two propositions as similar if they "look" similar to the eye of a logician. In Section I we have already defined three characteristics of an expression that can be used as criteria of similarity. These are: \(K \), the number of levels in the expression; \(J \), the number of distinct variables in the expression; and \(H \), the number of variables in the expression.\(^{12}\)

Applying these definitions to 2.01 (routines NK, NJ, and NH, respectively), we find that \(K = 3 \), \(J = 1 \), and \(H = 3 \). That is, 2.01 has three levels, one distinct variable (p), and three variable places. We may write this: \(D(2.01) = (3,1,3) \).

\(^{12}\)The assertion is that two expressions having the same description "look alike" in some undefined sense; and hence if we are seeking to prove one of them as a theorem, while the other is an axiom or theorem already proved, then the latter is likely construction material for the proof of the former. Empirically, it turns out that with the particular definition of similarity introduced here, in proving the theorems of Chapter 2 of Principia Mathematica about one theorem in five that is stored in the theorem memory turns out to be similar to the expression we are seeking to prove. It is easy to suggest a number of alternative, and quite different criteria that would be equally symptomatic of "similarity". Uniqueness is of no account here; all we are concerned with is that we have some criteria that "work" — that select theorems suitable for matching.
In the same way, we can write descriptions for the various sub-expressions contained in 2.01—in particular, the sub-expressions to the left and to the right of the main connective, respectively. We have for these: DL(2.01) = (2,1,2); and DR(2.01) = (1,1,1).

Now, we say that two expressions, x and y, are similar if they have identical left and right descriptions; i.e., if DL(x) = DL(y) and DR(x) = DR(y). The routine for determining whether two theorems are similar, CSm, consists of two segments: (1) CSm(D), a description segment, and (2) CSm(CD), a comparison of descriptions. The description segment is made up of four description routines, D, one each to compute DL(x), DR(x), DL(y), and DR(y). The comparison segment is made up of two compare description routines, CD, one of which compares DL(x) with DL(y), the other DR(x) with DR(y).

A diagram of the hierarchy of principal sub-routines in testing similarity will look like this:

![Diagram]

In the case of 2.01, the segment MSb(Sm) will search the list of axioms and theorems and will find that axiom 1.2 is similar to 2.01:

\begin{align*}
1.2 & \quad \text{p v p } \rightarrow p
\end{align*}

for it, too, has the descriptions: DL(1.2) = (2,1,2); DR(1.2) = (1,1,1). Moreover, 1.2 is the only axiom that has this description.
Matching Expressions, LMc. Next we carry out a point-by-point comparison between 2.0l, the expression to be proved, and 1.2, the axiom that is similar to it. We start with the main connectives, and work systematically down the tree of the logic expressions — always as far as possible to the left. In the present case, the order in which we will match is: main connective (P = none), connective of left sub-expression (P=L), left variable of sub-expression, (P=LL), right variable of sub-expression (P=LR), and right sub-expression (P=R).

The matching routine is fairly complicated, consisting of six segments, but not all segments are employed each time two elements are matched. The first segment, LMc(T), and the initial operations of most of the other segments, consist of tests that determine whether the two elements to be matched are already identical, whether they can be made identical by substitution (if one is a free variable) or by replacement (if both are connectives), or — finally — whether matching is impossible. The second segment, LMc(lMc), is a recursion of the matching routine with each of the next lower pair of elements in the tree of the expression. This recursion segment operates only if the elements to be matched in LMc are identical connectives (or have been made so).

The third and fourth segments, LMc(Sby) and LMc(Sbx), apply the rule of substitution when the tests have shown this to be appropriate. LMc(Sby), which is executed whenever E(x) is a free
variable, \(^{13}\) simply substitutes the expression \(X(y)\) for \(E(x)\). LMc(Sbx), which is executed whenever \(E(y)\) is a free variable, substitutes the expression \(X(x)\) for \(E(y)\). In both cases, of course, substitution must take place throughout the whole expression in which the free variable occurs. This is taken care of automatically by the process LSb. Also, since LMc matches \(X(x)\) to \(X(y)\), LMc(Sby) has priority over LMc(Sbx), as a careful examination of the test network will reveal.

The fifth segment, LMc(CN), reports the successful termination of the matching program if \(E(x)\) and \(E(y)\) are identical variables, its failure if they cannot be made identical by substitution.

The sixth segment, LMc(Rp), operates when \(E(x)\) and \(E(y)\) have different connectives. The segment replaces the connective in \(x\) by the connective in \(y\) whenever this replacement is legitimate, and then returns control to the recursion segment.

By virtue of the recursion segment, the matching routine will attempt to match each pair of elements; if successful, will proceed to the next pair; if unsuccessful, will report failure. Hence, the routine will continue until it makes the theorem that is being matched identical with the expression to be proved, or until the matching fails.

The hierarchy of principal routines looks like this:

\[
\begin{align*}
&\text{LRpv}\rightarrow \\
&\text{LRpv} \rightarrow \text{LMc} \\
&\text{LSb}
\end{align*}
\]

\(^{13}\)Essentially, a variable is free when no substitution has yet been made for it. After any substitution it is bound and no longer available for subsequent substitutions. As previously noted, all variables in expressions stored in the theorem memory are free.
Returning to our specific example of two similar expressions, 1.2 and 2.01, we carry out the matching routine as follows:

2.01 \[? \quad p \rightarrow -p \rightarrow -p \]

1.2 \[A \lor A \rightarrow A \]

(We use A instead of p in 1.2 to indicate that the variable is free (F).)

a. The main connectives agree: both are →.

b. Proceeding downward to the left, the connective is → in 2.01, but v in 1.2. To change the v to →, we must have (because of the definition, 1.01), a - before the left-hand A in 1.2. This we can obtain by making the substitution of -B for A in 1.2. Having carried out this substitution, and having then replaced (-B v -B) with (B → -B), we have the following situation:

2.01 \[? \quad p \rightarrow -p \rightarrow -p \]

1.2' \[B \rightarrow -B \rightarrow -B \]

c. Proceeding again to the left, we find B in 1.2', but p in 2.01. We therefore substitute p for B in 1.2', and now find (after recursion through the remaining two elements) that we have a complete match:

2.01 \[? \quad p \rightarrow -p \rightarrow -p \]

1.2'' \[p \rightarrow -p \rightarrow -p \]

Thus, we have discovered a proof of 2.01 (in fact, precisely the proof we gave before), which consists in substituting the variable -p for the variable in 1.2, and replacing the connective v in 1.2 with →.
This completes our outline of the method of substitution as a routine for discovering proofs in symbolic logic. The method may be viewed as an information process that is composed of a considerable number of more elementary information processes arranged to operate in highly conditional sequences. Each of the main components—the test for similarity routine, and the matching routine—is made up, in turn, of sub-routines. The test conditions that control the branchings of the sequences depend in a number of instances upon the outcomes of searches through the theorem memory. Hence, the method of substitution represents a complex information process in the sense in which we have defined the term. Combining the two diagrams depicted above, we can illustrate the hierarchy of the main operations that enter into the substitution method:

\[\begin{align*}
NK & \rightarrow D \\
NJ & \rightarrow D \\
NH & \rightarrow CD \\
& \rightarrow CSm \\
& \rightarrow MSb \\
& \rightarrow LRpv \\
& \rightarrow LMc \\
& \rightarrow LSb
\end{align*}\]

The method is a heuristic one, for it employs cues, based on the characteristics of the theorem to be proved, to limit the range of its search; it does not systematically enumerate all proofs. This use of cues represents a great saving in search, but carries the penalty that a proof may not in fact be found. The test of a heuristic is empirical: does it work?
Moreover, the cues that are used in the method are not without cost. For example, in order to limit matching attempts to "similar" theorems, theorems must be described and compared. The net saving in computing time, as compared with random search, is measured by the reduction in the number of theorems that have to be matched less the cost of carrying out the search and compare for similarity routines. Stated otherwise, cues are economical only if it is cheaper to obtain them than to obtain directly the information for which they serve as cues.

To be sure, we have found a proof for one proposition in Principia; but how general is the substitution method? On examination of the 67 propositions in Chapter 2 of Principia, it appears that some 21 can be proved by the method of substitution, including for example: 2.01, 2.02, 2.03, 2.04, 2.05, 2.10, 2.12, 2.21, 2.26, 2.27. The remaining propositions evidently require more powerful techniques of discovery and proof. It is evident, for instance, that we must employ the rule of detachment.

The Method of Detachment

We will describe next the method of detachment, MDt, which, as its name implies, incorporates the rule of detachment. The method, of course, is not synonymous with the rule, but includes also heuristic devices that select particular theorems to which the rule is applied.

Let us review the principle of logic that underlies the method. Suppose LT must prove that expression A is a theorem; and assume that there are in the theorem memory two theorems, B
and $B \rightarrow A$. Then, by application of the rule of detachment to B and $B \rightarrow A$, A is derivable immediately.

We can generalize this procedure by combining matching (substitution and replacement) with detachment. Assume that the theorem memory contains B'' and $B' \rightarrow A'$; that A is obtainable from A' by matching; and that B' is obtainable from B'' by matching. Then we can construct a proof of A as follows: (1) By matching with B'', B' is a theorem. (2) Since $B' \rightarrow A'$ is also a theorem, it follows by detachment that A' is a theorem. (3) By matching with A', A is a theorem.

This settles the problem of constructing a valid proof by the method of detachment. From the standpoint of the discovery of a proof employing this method, the trick lies again in narrowing down the search for $B' \rightarrow A'$ and B'', so that these do not have to be sought through a very large scale trial-and-error search and substitution program.

Structure of the Detachment Method. The basic structure of the detachment method is quite similar to that of the substitution method, for both methods utilize the same basic operations. The first two segments of the detachment method, $MDt(SmV)$ and $MDt(SmCt)$, carry out searches for similar expressions, in a way that will be indicated more precisely below. The next segment, $MDt(Mc)$, carries out a matching of any expression so found with the theorem to be proved. If the matching is successful, a new problem is created by the segment $MDt(F)$. This problem is then attacked, in the final segment, $MDt(MSb)$, by the method of substitution.
Again, designate by A the expression to be proved. In $MDt(SmV)$ we search the theorem memory for theorems whose right sides are similar (by the test, CSm, described previously) to the whole expression A. If we find such a theorem (call it T), we go to segment $MDt(Mc)$, and apply the matching operation to the right side of T and to A. If we are successful in the matching, we find the left side of T, $MDt(P)$; and seek to prove by the method of substitution that it is a theorem, $MDt(MSb)$. For if the left side of T is a theorem and T is a theorem, then by detachment, the right side of T is a theorem. But A can be obtained from the right side of T by substitution, hence is a theorem. (Note that a check is made to see that T has \rightarrow for a connective.)

Contraction. If the detachment method fails to find a proof in the manner just described, a new attempt is made by means of the second segment, $MDt(SmCt)$, employing a different criterion of similarity from the one we have used thus far. If the theorem is similar, the method proceeds with the matching segment exactly as before.

To see what is involved in this generalized notion of similarity, let us consider two expressions, A and A', with different descriptions. If A has more levels and variable places than A', it is still possible that A is derivable from A' by substitution; specifically, by substituting appropriate molecular expressions for the variables of A. For example, take as A the expression:

$2.06 \quad ? \quad p \rightarrow q \rightarrow q \rightarrow r \rightarrow p \rightarrow r$

for which we have $DL(2.06) = (2,2,2)$, $DR(2.06) = (3,3,4)$; and take as A' the expression:

$A' \quad ? \quad a \rightarrow b \rightarrow c$
for which we have DL(A') = (1,1,1), DR(A') = (2,2,2).

If in A' we substitute p→q for a, q→r for b, and p→r for c, we obtain 2.06. Operating in the reverse direction, if we contract 2.06 by making the inverse substitutions, we obtain A'. We can therefore refer to A' as "2.06 viewed as contracted".

Since the purpose in searching for similar theorems is to find appropriate materials to which to apply the matching routine, there is no reason why we should not use this more general notion of similarity if it proves effective in finding materials that are useful.

In general, what parts of an expression should be considered as units in the search for proofs is not a "given" for the problem solver. LT makes an explicit decision each time it looks for similar expressions as to what subexpressions will be taken as units. In contracting 2.06, a decision has been made that the elements p, q, and r are too small, and that more aggregative elements, e.g., (p→q) = a, should be perceived as units.

Examination of the routines for describing expressions (NH, NK, NJ) will reveal that these routines in fact count units rather than variables. Normally, the variables are the units used in description, for VV precedes CSm in every program except MDT. In the latter program, however, it is sometimes useful to view expressions as contracted, by means of VCT.

Example of Proof by Detachment. To illustrate the method of detachment, let us carry out explicitly the proof of 2.06:

2.06 ? p→q → q→r → p→r
The reader may verify that this theorem cannot be proved by substitution in the axioms and earlier theorems. Moreover, the detachment method without contraction will also fail, for there is no theorem whose right side is similar to 2.06. However, we have already seen that when we contract 2.06, we obtain:

\[A' \quad \rightarrow \quad a \rightarrow b \rightarrow c \]

where \(p \rightarrow q \) has been contracted to \(a \), \(q \rightarrow r \) to \(b \), and \(p \rightarrow r \) to \(c \). We now have \(DL(A') = (1,1,1) \) and \(DR(A') = (2,2,2) \), descriptions that are identical with the descriptions of the sub-expressions of the right side of 2.04.

2.04

\[A \rightarrow B \rightarrow C \implies B \rightarrow A \rightarrow C \]

\[A' \quad \rightarrow \quad a \rightarrow b \rightarrow c \]

Having selected 2.04 by use of the routine \(MDt(\text{SmCt}) \), we now proceed to match its right side with 2.06 in segment \(MDt(\text{Mc}) \):

2.04

\[A \rightarrow B \rightarrow C \implies B \rightarrow A \rightarrow C \]

2.06

\[p \rightarrow q \rightarrow q \rightarrow r \rightarrow p \rightarrow r \]

2.04'

\[q \rightarrow r \rightarrow p \rightarrow q \rightarrow p \rightarrow r \rightarrow q \rightarrow r \rightarrow p \rightarrow r \]

We have now created a new problem to replace the original one:

To prove that the left side of 2.04' (the part underscored) is a theorem. We apply the method of substitution, \(MDt(MSb) \). The search of the theorem memory discloses 2.05 to be similar to the left side of 2.04', and we proceed to match them:

2.04'L

\[q \rightarrow r \rightarrow p \rightarrow q \rightarrow p \rightarrow r \]

2.05

\[A \rightarrow B \rightarrow C \rightarrow A \rightarrow C \rightarrow B \]

It is easy to see that with the substitution of \(q \) for \(A \), \(r \) for \(B \), and \(p \) for \(C \), the matching will be successful. Hence we have \(B \) (2.05 with the indicated substitution), and \(B \rightarrow A \) (2.04').
from which A (2.06) follows by the rule of detachment.

The diagram below summarizes the principal routines incorporated in the method of detachment. A comparison of this diagram with the one for the substitution method shows clearly that both methods rest on the same component processes, with minor modifications and new combinations and conditions. The sole new process involved in detachment is the viewing of theorems as contracted.

![Diagram]

The Chaining Method

A number of expressions that do not yield to the method of substitution can be proved by the method of detachment. We shall add an additional method, however, to the repertoire available to LT. We shall call this method chaining, MCh. Like the methods previously described, chaining involves heuristic procedures which we shall consider first.

Theorem 2.06, which we have just proved, embodies one form of the principle of the syllogism (2.05 is another form of this principle). Now suppose \(T_1 \), \((p \rightarrow q)\) is a true theorem, and \(T_2 \), \((q \rightarrow r)\) is another true theorem. Theorem 2.06 is of the form:

\[
T_1 \rightarrow T_2 \rightarrow E
\]

where \(E \) is \((p \rightarrow r)\), an expression not known to be true. By detachment, from \(\neg T_1 \) and \(\neg T_1 \rightarrow T_2 \rightarrow E \), we get \(\neg T_2 \rightarrow E \). By a second detachment, from \(\neg T_2 \) and \(\neg T_2 \rightarrow E \), we get \(\neg E \). Hence, if we know \(p \rightarrow q \) and \(q \rightarrow r \) to be true, we can construct a proof of \(p \rightarrow r \) by means
of two detachments with the use of 2.06. Instead of carrying
through this derivation explicitly in each instance, we simply
construct a program that makes direct use of the transitivity of
syllogism. This proof method is the basis for chaining.

Suppose that we wish to prove \(A \rightarrow C \). We search for a theorem,
\(T \) (with \(\rightarrow \) for a connective) whose left side is similar to \(A \),
using the segment \(M\text{Ch}(\text{SmF}) \). We match the left side of \(T \) with \(A \),
\(M\text{Ch}(\text{McF}) \), and if we are successful, we have then proved a theorem
of the form \(A \rightarrow B \), for \(T \), as modified by matching, is of this form.
We check, first, in segment \(M\text{Ch}(\text{McR}) \) whether we can simply
match \(B \) to \(C \). If we succeed, we have proved the theorem. If we
fail, we now construct, by segment \(M\text{Ch}(\text{P}) \), the expression \(B \rightarrow C \),
and attempt to prove this expression by substitution, \(M\text{Ch}(\text{MSb}) \).
If we are successful, we now have a chain: \(A \rightarrow B, B \rightarrow C \). Then by
syllogism, as indicated above, we obtain \(A \rightarrow C \), the expression we
wished to prove.

The procedure just described is chaining forward. Alter-
natively, we may chain backward. That is, to prove \(A \rightarrow C \), we may
search for a theorem of the form \(B \rightarrow C \); then try to prove \(A \rightarrow B \) by
substitution.

Proof by the chaining method is illustrated by:

\[
\begin{align*}
2.08 & \quad \text{?} \quad p \rightarrow p \\
A \text{ search for theorems that have left sides similar to } 2.08 \text{ yields} \\
1.3, 2.02, \text{ and } 2.07. \text{ The latter is:} \\
2.07 & \quad \text{?} \quad p \rightarrow p \text{p}
\end{align*}
\]
If we take 2.07 as the \((A \rightarrow B)\) of the scheme given above, then \(B\) is \((p \rightarrow p\)). Two theorems have left sides similar to \(B\): 1.2 and 2.01. An attempt to match the left side of 2.01 to the right side of 2.07 will be unsuccessful, but the matching is immediate with 1.2:

\[
\begin{align*}
2.07 & \quad \frac{!}{p \rightarrow p \rightarrow p} \\
1.2 & \quad \frac{!}{p \rightarrow p}
\end{align*}
\]

Hence we can take 1.2 as the \((B \rightarrow C)\) of the chaining method. We now form \((A \rightarrow C)\) by joining the left side of 2.07 to the right side of 1.2 by \(\rightarrow\). The result is 2.08:

\[
\begin{align*}
2.08 & \quad \frac{!}{p \rightarrow p}
\end{align*}
\]

The chaining method is summarized by the following diagram, which shows that the method again makes use of tests for similarity, matching, and substitution:

\[
\begin{array}{c}
\text{CSm} \\
\text{LMc} \\
\text{MCh} \\
\text{M3b}
\end{array}
\]

The Executive Routine

It remains to complete the specification of \(LT\) in two directions; first, to assemble the three methods that have been described into a coherent program; and second, to show how the information processes in terms of which \(LT\) has been described here can be specified precisely in terms of the elementary processes listed in Section I. The latter task is carried out in detail in Section III. We will turn our attention here to the former, which is embodied in the **executive routine**, Ex.
In its first segment, Ex(R), the executive routine reads a new expression that is presented to it for proof, and places it in a working memory.14 In the next three segments, Ex(MSb), Ex(MDt), and Ex(MCh), successive attempts are made to prove the expression by the methods of substitution, detachment, and chaining, respectively. If a proof is obtained by one of these methods, the executive routine writes the proof, Ex(WP); and stores the newly-proved theorem (changing all its variables to free variables) in the theorem memory, Ex(ST).

To explain what happens if the three methods are unsuccessful, we have to take up some details that were omitted above. These have to do with the creation of subsidiary problems and with stop rules.

Subsidiary problems. Both detachment and chaining are two-step methods. Suppose we wish to prove A. In detachment, we try to find a theorem, $B \rightarrow A$, and if we are successful, we then try to prove B. The task of proving B we may call a subsidiary problem.

Suppose we wish to prove $a \rightarrow b$. In chaining, we try to find a theorem, $a \rightarrow c$, and if we are successful, we then try to prove $c \rightarrow b$. The task of proving $c \rightarrow b$ is also a subsidiary problem.

14Certain segments of Ex, in particular Ex(R), Ex(WP), Ex(ST) and Ex(WNP), are not written formally in Section III in terms of the primitives but are simply indicated by parentheses. It would be rather simple to formalize them, but this would further lengthen the description of the program.
Within both the detachment and chaining methods, only the method of substitution is applied to the subsidiary problem. If that method fails, failure is reported for the main problem. But before control is shifted back to the executive routine, the main element of the subsidiary problem is stored in the problem list, P, in the storage memory. (The operation that stores the problem in the problem list is the operation SEN that can be found in segment $\text{MDt}(P)$ and segment $\text{MCh}(P)$.)

When the three methods have failed for a given problem, the executive routine stores it in the inactive problem list, Q. It then selects from the problem list, P, an expression that is, in a certain sense, the simplest — specifically, an expression with the smallest possible number of levels, K, $\text{Ex}(CK)$. It erases this new subsidiary problem from P; checks to make certain it does not duplicate one previously attempted, $\text{Ex}(CX)$; and then tries to solve this subsidiary problem by the methods of detachment and chaining.15 This sequence is repeated until some subsidiary problem is solved (in which case the main problem is also solved), or until no problems remain on the problem list, or until the other stop rule, to be described, comes into operation. In the latter two cases, the routine reports that it is unable to prove the theorem, $\text{Ex}(\text{WNP})$.

15 There is no need to attempt to prove the subsidiary problem by substitution, since an unsuccessful substitution attempt was made immediately before the expression was stored in the subsidiary problem list.
The check to prevent duplication of subsidiary problems, \(\text{Ex}(CX) \), is handled as follows: for each problem that is selected from list \(P \) by \(\text{Ex}(CK) \), a check is made, by \(\text{Ex}(CX) \), against all expressions in the inactive problem list, \(Q \), and if the new problem duplicates any expression found there, it is dropped.

The main operation of this segment, \(CX \), applies the same basic tests of identity of elements that are applied in the matching program, but does not modify the expressions to make them match.

Stop Rules. Since all proof methods may fail, even if the expression given to LT is a genuine theorem, the executive routine needs a stop rule. One stop rule is provided by the exhaustion of list \(P \), but there is no guarantee that the list will ever be exhausted. A second stop rule is provided by an operation that measures the total amount of "work" that has been done in attempting to prove a theorem, and that terminates the program with a "no proof" report when the total work exceeds a specified amount. The first operation in the substitution routine, \(\text{NAW} \), tallies one for each time the routine is used. This tally is kept in a special location, \(W \), in the storage memory. The executive routine, just before it seeks a new subsidiary problem, checks the cumulative tally in this register, \(\text{Ex}(CW) \), and if the tally exceeds a given limit, terminates the program. Since the substitution routine is used in each of the methods, the number of substitutions attempted seems to be one reasonable index of the amount of work that has been done.
This stop rule operates as a global constraint on the total work applied in trying to prove a single theorem. The rule does not govern the direction in which this effort is expended. The latter is determined by the priority rule previously described for selecting subsidiary problems from the problem memory and by the other elements of LT's program.

Learning Processes

The program we have described is primarily a performance program rather than a learning program. But, although the program of LT does not change as it accumulates experience in solving problems, learning does take place in one very important respect. The program stores the new theorems it proves, and these theorems are then available as building blocks for the proofs of subsequent theorems. Thus, in the theorems used as examples in this paper, 2.06 was proved with the aid of 2.05 and 2.04, and 2.08 was proved with the aid of 2.07. Without this form of learning, it is doubtful whether the program would prove any but the first few theorems of Chapter 2 in a reasonable number of steps.
III

The Complete Program
for the Logic Theorist

This Section is divided into two parts. The first part constitutes the program as described in the text, including the following routines: Ex; MCh, MDT, MSb; LMc, LSb, LRp; V, VV, VCT; CX; CSm, CD, D, NK, NH, NJ. These routines are preceded by a list of the most important primitive IP's — those that are used in several routines. Following each routine is a supplementary list of primitive IP's used in the definition of that routine.

The second part of this Section consists of routines for five IP's — those Store instructions that are marked with asterisks (*) — which up to this point have been treated as primitives.

Principal Primitive Instructions

<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td>Branch to b (→b).</td>
</tr>
<tr>
<td>BHB</td>
<td>In higher instruction, →b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHN</td>
<td>In higher instruction, →next.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF</td>
<td>x y</td>
<td>b</td>
<td>Find the first E in A(x) and put in y; if none, →b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEN</td>
<td>x y</td>
<td>b</td>
<td>Find the E in A(x) next after E(y); put in y; then →b. If none (end of list), →next.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>x y</td>
<td></td>
<td>Find EL(x) and put in y; if none, leave y blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>x y</td>
<td></td>
<td>Find ER(x) and put in y; if none, leave y blank.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>x y</td>
<td></td>
<td>Put E(x) in E(y); E(x) remains.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>x</td>
<td></td>
<td>Store E(x) back in A(x) (match on P); if not there, store E(x) at end of A(x).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td>x y</td>
<td></td>
<td>Store E(x) as next E in A(y); E(x) now last item in A(y).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SX</td>
<td>x y</td>
<td></td>
<td>Store a copy of X(x) at (new) A(y). E(x) = M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>x</td>
<td>b</td>
<td>If C(x) = → (implies), →b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>x</td>
<td>b</td>
<td>If E(x) = V, →b.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A OPER L C R B

Ex

(Read problem X) R
(Put EM(X) in l)
-MSb 1 G MSb
A -MDt 1 G MDt
-MCh 1 G MCh
SEN 1 Q CW
CWG H CW
B FEF P 1 H CK
NK 1

C-FEN P 2 D
NK 2
CKG 2 1 C
PE 2 1
PK 2 1

B C

D E 1 P
FEF Q 3 F
E CX 1 3 B
FEN Q 3 E

F B A

G (Write proof.) WP
(X(1) a theorem) ST
(Stop)

H (Write: no proof) WNP
(Stop)

Primitives

CKG x y b If K(x) > K(y), \(\rightarrow b \).
CWG b If W(work done) > limit, \(\rightarrow b \).
E x y Erase E(x) in A(y).

Note: There are six IP's in the executive routine that are not formally defined in LT. These are written in parentheses above: read problem, find problem and put in working memory l, write proof, store expression as theorem, write "no proof", and stop.
<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
<th>Seg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCh</td>
<td>x</td>
<td>b</td>
<td></td>
<td></td>
<td>Chaining method</td>
</tr>
<tr>
<td></td>
<td>-TC→</td>
<td>L</td>
<td>D</td>
<td>T</td>
<td></td>
<td>If can't prove X(x) by chaining, →b; Store new problems in P.</td>
</tr>
<tr>
<td>VV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(x) must be →.</td>
</tr>
<tr>
<td>FL</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>T must have C = →.</td>
</tr>
<tr>
<td>FR</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Copy, to work on T.</td>
</tr>
<tr>
<td>PEP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Find next T and repeat.</td>
</tr>
<tr>
<td>A</td>
<td>-TC→</td>
<td>3</td>
<td>C</td>
<td></td>
<td></td>
<td>Put E(2) and E(6) in proper working memory.</td>
</tr>
<tr>
<td>VV</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Create EM for new X.</td>
</tr>
<tr>
<td>SX</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Fix connective.</td>
</tr>
<tr>
<td>FL</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Store parts.</td>
</tr>
<tr>
<td>FR</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>MSb</td>
</tr>
<tr>
<td>E</td>
<td>PE →</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-LMc</td>
<td>1</td>
<td>5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>AM</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td>7</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXL</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SXR</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSb</td>
<td>7</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primitives

- **PC**→ x
- **SX**XL x y
- **SX**XR x y

Put C(x) = → (implies).
Store X(x) in A(y) as XL(y).
Store X(x) in A(y) as XR(y).
A OPER L C R B

MDt x b

FEF T 1 C
TC 1 B
VV 1
FR 1 2
VV L
CSm L 2 D
Vct L
CSm L 2 D
FEN T 1 A
BHB

D SX 1 3
FR 3 4
LMc 4 L B
FL 3 5
SXm 5 6
S 6
SEN 6 P
MSb 6 B
BHN

Seg.

Detachment method
If can't prove \(X(x) \) by
detachment, \(\rightarrow b \). Store
new problems in P.

T

T must have \(C \rightarrow \).

SmV

SmCt

Change view.

Find next T and repeat.

Copy to work on T.

Mc

P

Create new X.

Store away fixed ME.

Primitives

*SXM x y Store \(X(x) \) at (new) \(A(y) \) as
main expression.

A OPER L C R B

MSb x b

NAW
VV L
FEF T 1 C
VV 1
CSm L 1 D
FEN T 1 A
BHB

Seg.

Substitution method
If can't prove \(X(x) \) by
substitution, \(\rightarrow b \).

NAW
Sm

Count one unit of work.

Find next T and repeat.

Mc

Add one to \(W \) (work done).
Matching routine

Match \(X(x) \) to \(X(y) \); if can't, \(\rightarrow b \).

Now \(G(x) = G(y) \).

Mc left sub-expression.

Mc right sub-expression.

Primitives

<table>
<thead>
<tr>
<th>Oper</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>OPER</td>
<td>L</td>
<td>C</td>
<td>R</td>
</tr>
<tr>
<td>LMc</td>
<td>x</td>
<td>y</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>CGG</td>
<td>C</td>
<td>L</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CGG</td>
<td>L</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CC</td>
<td>L</td>
<td>C</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMc</td>
<td>1</td>
<td>2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>L</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMc</td>
<td>3</td>
<td>4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **A TV L H**
 - **Sby**

- **B NSGG L C**
 - **Assures Sb everywhere.**
 - **FM L 5**
 - **LSb C L 5**
 - **BHN**

- **C TV C H**
 - **Sbx**

- **D -TF C H**
 - **NSGG C L**
 - **FM C 5**
 - **LSb L C 5**
 - **BHN**

- **E TF L B**
 - **CN**
 - **-TV C H**
 - **-CN, L C D**
 - **BHN**

- **F -LRp^v L G**
 - **Rp**
 - **LRp's are self-testing.**
 - **-LRp^v L H**
 - **-LRp^v L H**
 - **G LMc L C H**
 - **BHN**

<table>
<thead>
<tr>
<th>Oper</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>BHB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If

- **CC x y b**
 - If \(C(x) = C(y) \), \(\rightarrow b \).

- **CGG x y b**
 - If \(G(x) > G(y) \), \(\rightarrow b \).

- **CN x y b**
 - If \(N(x) = N(y) \), \(\rightarrow b \).

- **FM x y**
 - Find \(EM(x) \) and put in \(y \).

- **NSGG x y**
 - Subtract \(G(x) \) from \(G(y) \).

- **TF x b**
 - If \(E(x) \) is free, \(\rightarrow b \).
A OPER L C R B

LSb x y z

FEF L 1 F
A CPS 1 1 B
CN 1 C G
B FEN L 1 A
C FEF R 2 F
D -CN 2 C E
PE L 3
NAGG 2 3
SXE 3 2
E FEN R 2 D
F BHN

G AN 4
LSb 4 C R
B C

Primitives

AN x
Assign an unused name to E(r).

CN x b
If N(x) = N(y)b.

CPS x y b
If E(x) subelement of E(y)b
(P(x)⇁P(y)).

NAGG x y
Add G(x) to G(y); result in
G(y).

*SXE x y
Store X(x) in A(y) in place
of E(y) (=v).

A OPER L C R B

Seg.

LRp+ v x b

TC L A
BHN

A PCv L
S L
FL L 1
NAG 1
S 1
BHN

Primitives

NAG x
Add one to G(x)

PCv x
Put C(x) = v.
A OPER L C R B

Seg.

Replacement of v with →.
If $C(x) = v$ and $G(E_l(x)) > 0$, replace v with $→$; if not $→b$.

LRpv→ x b

-Tcv L A T
FL L 1
TGG 1 C
-TV 1 A
-Tsb 1 B

A BHN

B PE 1 2 Sb
NAG 2
FM 2 3
LSb 2 1 3
FL L 1

C PC→ L P Fix x.
S L
NSG 1
S 1
BHN

Primitives

FM x y Find EM(x) and put in y.
NAG x Add one to $G(x)$.
NSG x Subtract one from $G(x)$.
PC x Put $C(x) = →$
TGG x b If $G(x) > 0 \rightarrow b$.

A OPER L C R B

Seg.

VV x

View variables as units.

FEF L 1 T
A PUB 1
-TV 1 B P
PU 1
B 3 1
FEN L 1 A
BHN

Primitives

PU x Make $E(x)$ a unit, (U).
PUB x Make $U(x)$ blank.
<table>
<thead>
<tr>
<th>A OPER L C R B</th>
<th>Seg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>View as contracted</td>
</tr>
<tr>
<td></td>
<td>Make units of binary</td>
</tr>
<tr>
<td></td>
<td>expressions and</td>
</tr>
<tr>
<td></td>
<td>isolated variables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vct</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>L C</td>
</tr>
<tr>
<td>FL</td>
<td>L 1</td>
</tr>
<tr>
<td>FR</td>
<td>L 2</td>
</tr>
<tr>
<td>TV</td>
<td>1 B</td>
</tr>
<tr>
<td>Vct</td>
<td>1 E</td>
</tr>
<tr>
<td>TV</td>
<td>2 E</td>
</tr>
<tr>
<td>A Vct</td>
<td>2</td>
</tr>
<tr>
<td>PUB</td>
<td>L</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>BHN</td>
<td></td>
</tr>
<tr>
<td>B -TV</td>
<td>2 D</td>
</tr>
<tr>
<td>PUB</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>PUB</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>TN</td>
<td>L C</td>
</tr>
<tr>
<td>AN</td>
<td>L</td>
</tr>
<tr>
<td>C PU</td>
<td>L</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>BHN</td>
<td></td>
</tr>
<tr>
<td>D PU</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>E. PU</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>BHN</td>
<td></td>
</tr>
</tbody>
</table>

Primitives

<table>
<thead>
<tr>
<th>AN</th>
<th>x</th>
<th>Assign E(x) an unused name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(See VV for PU and PUB)</td>
</tr>
<tr>
<td>TN</td>
<td>x</td>
<td>b If E(x) has a name →b.</td>
</tr>
</tbody>
</table>
A OPER L C R B

<table>
<thead>
<tr>
<th>CX</th>
<th>x</th>
<th>y</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGG</td>
<td>L</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>CGG</td>
<td>C</td>
<td>L</td>
<td>B</td>
</tr>
<tr>
<td>TV</td>
<td>L</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>-CC</td>
<td>L</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>FL</td>
<td>L</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-CX</td>
<td>1</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>FR</td>
<td>L</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>C</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-CX</td>
<td>3</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>BHB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seg.

Compare expressions

Compare X(x) with X(y); if they match, → b.

G(L) = G(R), otherwise B.

C(L) = C(R)
Recursion down tree of expressions.

A -TV C B
-CN L C B

B BHN

Primitives

(For CC, CGG, and CN, see LMc)

A OPER L C R B

<table>
<thead>
<tr>
<th>CSM</th>
<th>x</th>
<th>y</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>L</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>FR</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td>C</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>C</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CD</td>
<td>1</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>-CD</td>
<td>2</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>BHB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seg.

Similar expressions test
If DL(x) = DL(y) and DR(x) = DR(y), → b.

A BHN
A OPER L C R B

Seg.

<table>
<thead>
<tr>
<th>CD</th>
<th>x</th>
<th>y</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>L C A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CJ</td>
<td>L C A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>L C A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare descriptions

If $K(x) = K(y)$, $J(x) = J(y)$, and $H(x) = H(y) \Rightarrow b$.

Def: If $K(x) = K(y) \Rightarrow b$.
Def: If $J(x) = J(y) \Rightarrow b$.
Def: If $H(x) = H(y) \Rightarrow b$.

A OPER L C R B

Seg.

Describe

<table>
<thead>
<tr>
<th>D</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK</td>
<td>x</td>
</tr>
<tr>
<td>NJ</td>
<td>x</td>
</tr>
<tr>
<td>NH</td>
<td>x</td>
</tr>
<tr>
<td>BHN</td>
<td>x</td>
</tr>
</tbody>
</table>

A OPER L C R B

Seg.

<table>
<thead>
<tr>
<th>NK</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU</td>
<td>L A</td>
</tr>
<tr>
<td>TB</td>
<td>L B</td>
</tr>
<tr>
<td>FL</td>
<td>L 1</td>
</tr>
<tr>
<td>NK</td>
<td>1</td>
</tr>
<tr>
<td>FR</td>
<td>L 2</td>
</tr>
<tr>
<td>NK</td>
<td>2</td>
</tr>
<tr>
<td>CKG</td>
<td>2 L C</td>
</tr>
<tr>
<td>PK</td>
<td>1 L</td>
</tr>
<tr>
<td>A</td>
<td>NAK L</td>
</tr>
<tr>
<td>B</td>
<td>BHN</td>
</tr>
<tr>
<td>C</td>
<td>PK 2 L</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Count levels

| C | PK 2 L | KR |

Primitives

- **CKG** x y b: If $K(x) > K(y) \Rightarrow b$.
- **NAK** x: Add one to $K(x)$.
- **PK** x y: Put $K(x)$ in $K(y)$.
- **TB** x b: If $E(x)$ is blank $\Rightarrow b$.
- **TU** x b: If $E(x)$ is a unit $\Rightarrow b$.

Original Document Context:

- Page 868
- Page 58

Extraction Context:

- Page 868
- Page 58
A OPER L C R B | Seg.
---|---
NJ | x | Count distinct variables

A 1
AA 1
FEF 2 2 E
-CP 2 2 D
TU 2 2 D
FEF 1 3 C
CN 2 3 D
FEN 1 3 B
C 2 2 1
SEN 2 1
NAJ 1 L
FEN 1 2 A
E BHN

List for counted-V.
Find first E of X(x).
Find first V of list.
Find next V of list.
Find next E of X(x).

Primitives

<table>
<thead>
<tr>
<th>Oper</th>
<th>Mov</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CN</td>
<td>x y b</td>
<td>x y b</td>
</tr>
<tr>
<td>CPS</td>
<td>x y b</td>
<td>x y b</td>
</tr>
<tr>
<td>NAJ</td>
<td>x</td>
<td>x b</td>
</tr>
<tr>
<td>TU</td>
<td>x b</td>
<td>x b</td>
</tr>
</tbody>
</table>

Assign an unused list to A(x).
If N(x) = N(y), \(\rightarrow b\).
If E(x) subelement of E(y), \(\rightarrow b\).
(P(x) \supset P(y)).
Add one to J(x).
If E(x) is a unit, \(\rightarrow b\).

A OPER L C R B	Seg.
NH | x | Count variable places

FEF 1 1 C
A -CP 1 1 B
TU 1 B
NAH L
FEN 1 1 A
B HN

Primitives

<table>
<thead>
<tr>
<th>Oper</th>
<th>Mov</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS</td>
<td>x y b</td>
<td>x y b</td>
</tr>
<tr>
<td>NAH</td>
<td>x</td>
<td>x b</td>
</tr>
<tr>
<td>TU</td>
<td>x b</td>
<td>x b</td>
</tr>
</tbody>
</table>

If E(x) subelement of E(y), \(\rightarrow b\).
(P(x) \supset P(y)).
Add one to H(x).
If E(x) is a unit, \(\rightarrow b\).
PART 2: Reduction of procedural processes

The store instructions that rewrite expressions in various ways can be reduced to processes more like the rest of the primitive set. The new primitives required are (a) two (PA and CP) which belong to types of operations already considered, and (b) four of a new type to manipulate the P sequences. The latter operations insert and delete subsequences from the front end of a given sequence. Thus if \(P = LRLR \) and \(P' = LRLRRLR \), then \(P'' = P' - P = RLR \) and \(P'' + P = LRLRRLR \). Observe that subtraction can only be performed when the subtrahend is an initial segment of the minuend, and also that addition is not commutative. All these routines involve bringing in the elements, one by one, modifying them and storing them in the new list.

Store a copy of \(X(x) \) at (new) \(A(y) \) (\(E(x) = M \)).

<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>AA</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEF</td>
<td>L</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>PE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEN</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Store \(X(x) \) at (new) \(A(y) \) as main expression

<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>AA</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEF</td>
<td>L</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CPS</td>
<td>1</td>
<td>L</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSPP</td>
<td></td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>FEN</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Store \(X(x) \) in \(A(y) \) in place of \(E(y) \) (\(E(y) = V \))
(take \(E(x) \) from w.m.)

<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF</td>
<td></td>
<td>L</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CP</td>
<td>1</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPS</td>
<td>1</td>
<td>L</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSPP</td>
<td></td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAP</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>FEN</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>PE</td>
<td></td>
<td>L</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Store $X(x)$ in $A(y)$ as $XL(y)$.

<table>
<thead>
<tr>
<th>A OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF</td>
<td>L</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A CPS</td>
<td>1</td>
<td>L</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPP</td>
<td>L</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAPL</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAPP</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B PEN</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Store $X(x)$ in $A(y)$ as XR(y).

<table>
<thead>
<tr>
<th>A OPER</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF</td>
<td>L</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CPS</td>
<td>1</td>
<td>L</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPP</td>
<td>L</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAPR</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAPP</td>
<td>C</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B FEN</td>
<td>L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primitives

AA	x
CP	x y b
CPS	x y b
HAPL	x
HAPR	x
HAPP	x y
HSPP	x y
PA	x y

Assign an unused list to $A(x)$. If $P(x) = P(y)$ $\rightarrow b$ (locates "same" element even though V, G, etc. have been modified). If $E(x)$ subelement of $E(y)$, $\rightarrow b$ ($P(x) \supset P(y)$).

Add a Left to front of $P(x)$. Add a Right to front of $P(x)$. Add $P(x)$ to front of $P(y)$. Subtract $P(x)$ from front of $P(y)$.

Put $A(x)$ in $A(y)$.
Conclusion

In this paper we have specified in detail an information processing system that is able to discover, using heuristic methods, proofs for theorems in symbolic logic. We have confined ourselves to description, and have not attempted to generalize in abstract form about complex information processing. Because of the nature of the description, involving considerable rigor and detail, it may be useful to set out in conclusion the main features of LT, especially as these appear to reflect basic characteristics of complex systems.

First of all, LT can be specified at all only because its structure is basically hierarchical, and makes repeated use of both iteration and recursion. So true is this, that one of LT's main features, the use of a problem-subproblem hierarchy, is hardly visible in the program at all.

LT offers no guarantee of finding a proof; on the other hand, it brings to its task a number of different heuristic methods for achieving its goals. All of these methods are important in making LT sufficiently powerful to find proofs in most cases, and to find them with a reasonable amount of computation, but not all of them are essential. Without chaining, for instance, LT could still function. The methods MSb and MDt still provide it with ways to prove theorems — and even some theorems more easily provable by MCh would yield to the more directly "brute force" approach of the other two.
LT is still a very simple process compared, for instance, with the array of methods, techniques, and concepts used by a human logician. For example, the concepts of commutativity and associativity are nowhere to be found in LT. The analysis of LT and its variations is a subject for later papers. However, the following facts, based on hand simulation, may help put LT in perspective. LT will prove in sequence most of the 60 odd theorems in Chapter 2 of Principia Mathematica. With some extension in the variety of methods and cues employed, it will prove most of the theorems in Chapter 3, in which another connective, "and", is introduced.16

LT uses similarity-testing and matching as a multi-stage search and selection process. The questions of efficiency involved in such processes have already been commented upon in Section II. Additional variation and complexity enters the program through the alternative modes, VV and VCT, for perceiving the logic expressions in the course of testing similarity and of matching.

In these and other ways the logic theorist is an instructive instance of a complex information process. We expect to learn more about such processes when we have realized the logic theorist in a computer and studied its operations empirically; and when the logic theorist will have been joined by similar systems capable of performing other complex information processing tasks.

16A program to do this has been developed and hand simulated by Mr. Kalman Cohen. We know nothing, as yet, about what will be required for an extension to the predicate calculus or to other types of problem solving.